



下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、必修一 函數(shù)及其表示一、知識復(fù)習(xí)1.函數(shù)的定義:設(shè)A,B是非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的的數(shù)f(x)和它對應(yīng),那么就稱f:A->B 為從集合A到集合B的一個(gè)函數(shù),記作:y=f(x),xA其中,x是自變量,x的取值范圍A叫做函數(shù)的定義域,與x的值對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合f(x)|xA叫做函數(shù)的值域,顯然,值域是集合B的子集。2.區(qū)間:設(shè)a,b是兩個(gè)實(shí)數(shù),而且a<b,我們規(guī)定:(1)滿足不等式axb的實(shí)數(shù)x的集合叫做閉區(qū)間,表示為:a,b(2) 滿足不等式a<x<b的實(shí)數(shù)x的集合叫做開區(qū)間,表示為
2、:(a,b)(3) 滿足不等式ax<b或a<xb的實(shí)數(shù)x的集合叫做半開半閉區(qū)間,分別表示為:a,b),(a,b.(4) 實(shí)數(shù)R=(-,+),其中+表示比任意給定的數(shù)都大,-表示比任意給定的數(shù)都小。因并不存在-,+,所以-,+不能用閉區(qū)間。滿足xa的實(shí)數(shù)可表示為a,+)。注意:a<b,即區(qū)間的左端點(diǎn)一定比右端點(diǎn)小。3.函數(shù)的表示方法:(1).解析法:用數(shù)學(xué)表達(dá)式表示兩個(gè)變量之間的對應(yīng)關(guān)系,如f(x)=2x-3 (2). 圖象法:用圖象表示兩個(gè)變量之間的對應(yīng)關(guān)系(3).列表法:列出表格來表示兩個(gè)變量之間的對應(yīng)關(guān)系4.分段函數(shù):指在定義域的不同部分,有不同的解析式。注意:
3、分段函數(shù)是一個(gè)函數(shù),分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集。分段函數(shù)畫圖一般分段畫,求分段函數(shù)的函數(shù)值要先搞清自變量在那一段,再代那一段的表達(dá)式。5.映射:(1).定義:設(shè)A,B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的的元素y和它對應(yīng),那么就稱f:A->B 為從集合A到集合B的一個(gè)映射。(2).映射和函數(shù)的關(guān)系:函數(shù)是特殊的映射,即當(dāng)兩個(gè)集合A,B都為非空的數(shù)集時(shí),從A到B的映射就是函數(shù),所以函數(shù)一定是映射,映射不一定是函數(shù)。二、學(xué)法指導(dǎo):1.函數(shù)的三要素:定義域、對應(yīng)法則、值域;有時(shí)給出的函數(shù)沒有明確說明
4、定義域,這時(shí),定義域就是字變量有意義的x的集合;如果函數(shù)涉及實(shí)際問題,它的定義域還需使實(shí)際問題有意義或另有其它限制。2.符號f(x)表示變量y是變量x的函數(shù),它僅僅是函數(shù)的符號,并不表示y等于f與x的乘積;符號f(x)與f(m)既有區(qū)別又有聯(lián)系,當(dāng)m是變量時(shí),函數(shù)f(x)與函數(shù)f(m)是同一個(gè)函數(shù);當(dāng)m是常數(shù)時(shí),f(m)表示自變量x=m對應(yīng)的函數(shù)值,是一個(gè)常量。3.基本初等函數(shù)的定義域與值域:(1).一次函數(shù)f(x)=kx+b(k0)的定義域是R,值域是R(2).反比例函數(shù)f(x)=k/x (k0)的定義域是x|x0,值域是x|x0(3).二次函數(shù)f(x)=ax2+bx+c(a0)的定義域是R
5、; 當(dāng)a>0時(shí),值域是y|y(4ac-b2)/4a;當(dāng)a<0時(shí),值域是y|y(4ac-b2)/4a4. 如何判斷兩個(gè)函數(shù)是同一函數(shù):當(dāng)且僅當(dāng)兩個(gè)函數(shù)的三要素完全相同時(shí),它們才是同一函數(shù),只要有一個(gè)要素不同就不是同一函數(shù);又函數(shù)的值域是有定義域和對應(yīng)法則確定的,則只需看定義域與對應(yīng)法則是否相同即可。注意:用什么字母表示沒有關(guān)系。比如:f(x)=2x+3與g(t)=2t+3是同一函數(shù)。方法:先求定義域,如不一樣,則不是同一函數(shù);若定義域一樣,則化簡函數(shù)的表達(dá)式,如果化簡后的表達(dá)式一樣,則它們是同一函數(shù)。5.描點(diǎn)法畫函數(shù)圖象的步驟:(1).求函數(shù)的定義
6、域;(2).列表;(關(guān)鍵點(diǎn)一定要列上,比如端點(diǎn)、轉(zhuǎn)折點(diǎn))(3).描點(diǎn);(4).連線。練習(xí)題2-1(總難度等級為容易)1.已知一次函數(shù)f(x)滿足f(2)=3,f(3)=5,則f(x)的表達(dá)式為( )A. 3x+5 B. 2x-1 C. 2x+1 D. 3x-52. 已知f(x)=2x2+x+1,則f(-2)= ( )A. -9 B. -11 C. 7 D. -73. 若a-1,2a+1表示一個(gè)區(qū)間,則a的取值范圍是( )A. a-2 B. a>-2 C. a>0 D. R4.
7、則f(-5)= ( ) A. -5 B. 5 C. 0 D. 15. 設(shè)函數(shù)f(x)=2x+4,則f(k+1)= ( )A.2k+4 B. 2k+5 C. 2k+6 D. 2k+106. 函數(shù)f(x)=x2+2x-3的值域?yàn)?( )A. -3,+) B. -4,+) C. -4,+ D. R7. 函數(shù)f(x)= + 的定義域是( )A. (-,6 B. (-,1)(1,+) C. (-,1)(1,6 D. (1,+)8. A. -4 B. 15 C. 4 D. 99. 下列各組函數(shù)中,兩個(gè)函數(shù)是相同函數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 加工承攬意向合同范本
- 出讓合同范本
- 買磚合同范本
- 兒女撫養(yǎng)合同范本
- 農(nóng)村租房建基站合同范本
- 代建合同范本政府蓋章
- 世界500強(qiáng)合同范本
- 會務(wù)代辦合同范本
- 供貨定金合同范本
- 別墅門窗出售合同范本
- 2024至2030年中國毛絨玩具數(shù)據(jù)監(jiān)測研究報(bào)告
- 建筑復(fù)工復(fù)產(chǎn)安全培訓(xùn)
- GB 21258-2024燃煤發(fā)電機(jī)組單位產(chǎn)品能源消耗限額
- 八年級上學(xué)期語文12月月考試卷
- 醛固酮增多癥與原發(fā)性醛固酮增多癥概述
- 山東省淄博市2023-2024學(xué)年高一下學(xué)期期末教學(xué)質(zhì)量檢測數(shù)學(xué)試題
- 廣東省2024年普通高中學(xué)業(yè)水平合格性考試語文仿真模擬卷01(解析版)
- 2025屆新高考生物精準(zhǔn)復(fù)習(xí)+提高農(nóng)作物產(chǎn)量
- 第6課歐洲的思想解放運(yùn)動(dòng)教學(xué)設(shè)計(jì)2023-2024學(xué)年中職高一下學(xué)期高教版(2023)世界歷史
- 2024年云南省昆明市選調(diào)生考試(公共基礎(chǔ)知識)綜合能力題庫必考題
- 2024年時(shí)政試題庫(奪分金卷)
評論
0/150
提交評論