




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、兩條直線的交點學業(yè)分層測評(建議用時:45分鐘)學業(yè)達標、填空題1.直線li:x + by= 1與直線12: X-y= a的交點坐標為(0,2),則a=1【解析】將點(0,2)代入X+ by= 1,得b=扌,將點(0,2)代入 X-y= a,得 a= 2.9【答案】-212.已知a為常數,則直線5x+4y= 2a+ 1與直線2x+ 3y= a的交點坐標為【解析】j5x + 4y= 2a+ 1, 由i(2x+ 3y= a,r 2a+ 3丿x= 7 得Ia2I尸7 .所以交點坐標為/2a + 3 a 2【答案】3.已知Pi(ai, bi)與P2(a2, b2)是直線y= kx+ 1(k為常數)上兩
2、個不同的點,fa1X + b1y= 1,則關于x和y的方程組的解的情況是la2x + b2y= 1無論k, Pi, P2如何,總是無解;無論k, Pi, P2如何,總有唯一的解; 存在k, Pi, P2,使之恰有兩解; 存在k, Pi, P2,使之有無窮多解.【解析】由題意,直線y= kx+ 1 一定不過原點0, P1, P2是直線y= kx+ 1上不同的兩點,貝U OPi與0P2不平行,因此aib2-a2bi 0,所以二元一次|a1X + b1y= 1,方程組$a2x+ b2y= 1定有唯一解.【答案】 4.若三條直線x+y+ 4= 0, x y+ 1= 0和x+ by= 0相交于一點,則b
3、的 值是.【解析】x+ y+ 4 = 0,jx=-2,/ 5解得3 將點(2,ly=-2,聯立X y+ 1= 0,by= 0,解得5 b= 3.【答案】5.直線I過直線2x y+ 4= 0與x 3y+ 5= 0的交點,且垂直于直線ynx.則直線I的方程是【解析】由2x y+40'解得交點坐標為(-7 I)故直線I過點lx 3y+ 5= 0,. 5 5丿5, 5)斜率為一 2,所以直線I的方程為y 6= 2(+5)即為10x + 5y+ 8【答案】10x+5y+ 8 = 06.直線(a+ 2)y + (1 -a)x 3 = 0 與直線(a + 2)y+ (2a + 3)x + 2 = 0
4、不相交,則【解析】 要使兩直線不相交,則它們平行,當 a + 2 = 0時,即a= 2, 兩直線為x= 1, x= 2,此時兩直線平行,符合題意.1 a2a + 32當a+ 2工0時,一=,解得a= £a+2a+232所以a= 2或a= 22【答案】 2或27 .直線(2k 1)x (k+ 3)y (k11) = 0(k R)所經過的定點是【解析】方程整理為k(2x y 1) (x + 3y 11)= 0(kR).j2x y 1 = 0,由題意知ix+ 3y 11= 0,|x = 2,解得j 即直線過定點(2,3).Iy= 3,【答案】(2,3)8若直線I: y= kx/3與直線2x
5、+ 3y 6= 0的交點位于第一象限,則直線I的傾斜角的取值范圍是.【解析】 如圖,直線2x+ 3y 6= 0過點A(3,0), B(0,2),直線I必過點C(0,V3),當直線I過點A時,兩直線的交點在x軸上,此時直線I的斜率為kAC =、(3號,傾斜角為30°當直線I繞點C逆時針旋轉時,交點進入第一象限,傾斜角 無限趨近于90°從而得出結果.【答案】& n)二、解答題9.當 0vav2 時,直線 li: ax 2y= 2a 4 和 b: 2x+ a2y= 2a2 + 4 與坐標軸 圍成一個四邊形,求使四邊形的面積最小時的 a值.【解】 如圖,直線Ii: a(X
6、2) 2(y 2) = 0.過定點 B(2,2).2直線 I2: (2X 4) + a (y 2) = 0,由2x-4= 0和y 2= 0,得12也過定點B(2,2).Ii與y軸交于點A(0,2 a),12與x軸交于點C(a2 + 2,0).S 四邊形 OABC = SOB + S/BOC = 2(2 a) X 2 +(a2 + 2) X 22=a2 a+ 4= £ - y + 普.115當a = 2時,S取最小值.1即四邊形OABC的面積最小時,a的值為2.10.已知過原點的直線I與兩直線li: 4x+y+ 6= 0, l2: 3x 5y 6= 0交點的橫坐標分別為XA, XB,且
7、xa+ XB = 0,求直線I的方程.【解】 若I的斜率不存在,則I的方程為X= 0,XA= XB= 0,滿足 Xa+ XB = 0 的要求,I的方程可以是X= 0.若I的斜率存在,設為k,則I的方程為y= kX.由卜kX,得XA=-;4x+y+ 6 = 0,4+ k由P",得xb=亠.px- 5y - 6= 0,3 5k由 xa+ xb = 0?-旦 + = 0? k=- 6.4+ k 3 - 5k61的方程為y= 6X,即X+ 6y= 0.的方程為x= 0或x+ 6y= 0.能力提升11.若直線y= x與直線y=Rx- 5的交點在直線y= kx+ 3上,貝U k=ly= kx-5
8、,5k f 5k 5k【解析】由 k解得x=y=n,將匚,匚©.代入y= kxy.y= x,-+ 3,得邑=出+3,解得k= 3.1-k 1-k5【答案】32.三條直線X-2y+ 1= 0, x+ 3y 1 = 0和ax+ 2y-3 = 0共有兩個不同的 交點,貝U a=./ 1 2、【解析】由于直線l1: x-2y+ 1 = 0, I2: x+ 3y- 1 = 0有一交點£, £丿,要使三條直線有兩個不同的交點,則必使 13: ax+ 2y- 3= 0與li平行或與I2平行.所以a=- 1或a= |.2【答案】 -1或23直線I經過2x-3y+ 2 = 0和3x
9、-4y- 2= 0的交點且與兩坐標軸圍成等腰直角三角形,則直線I的方程為.|2x-3y+ 2= 0,【解析】解方程組i得兩直線交點坐標為(14,10).又由l3x- 4y- 2= 0,三角形為等腰直角三角形知所求直線斜率 k=±,即可寫出所求的直線方程.【答案】x y 4= 0或x+ y 24= 04.已知 ABC中,頂點A(0,1),AB邊上的高線CD所在直線的方程是x+2y 4= 0, AC邊上的中線BM所在直線的方程為2x+ y 3= 0,求 ABC的頂 點B, C及垂心H的坐標.【解】-AB邊上的高線CD的方程為x+ 2y 4= 0,1'kCD= 2 , kAB= 2,直線AB的方程為y= 2x+ 1,得x=2ly= 2,|y= 2x+ 1,由 l2x+ y 3 = 0,f1、即B, 2丿設C(m, n),則由已知條件得l"m+2n 4=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小麥加工資源增值策略考核試卷
- 土木工程建筑排水系統(tǒng)施工考核試卷
- 2017社保培訓課件
- 孔樁勞務合同范本
- 民宅鋪面出售合同范本
- 碼頭設備采購合同范本
- 購買國外技術合同范本
- 熱水買賣合同范本
- led燈改造合同范本
- 寵物寄養(yǎng)服務中動物健康保證協(xié)議
- 22陳涉世家 司馬遷 公開課一等獎創(chuàng)新教學設計 度部編版初中語文九年級下冊
- 2021年飽和蒸汽及過熱蒸汽焓值表
- 《抗戰(zhàn)中的英雄人物》課件
- 外墻真石漆施工方案
- 森林防火安全生產工作
- 《服裝市場營銷》課件
- 網絡安全風險評估報告模板
- 什么是法律談判課件
- 成考教材-數學教程(文史財經類)
- 保安服務管理制度范文
- 汽車行業(yè)維修記錄管理制度
評論
0/150
提交評論