小學(xué)奧數(shù)知識點詳細(xì)串講五年級_第1頁
小學(xué)奧數(shù)知識點詳細(xì)串講五年級_第2頁
小學(xué)奧數(shù)知識點詳細(xì)串講五年級_第3頁
小學(xué)奧數(shù)知識點詳細(xì)串講五年級_第4頁
小學(xué)奧數(shù)知識點詳細(xì)串講五年級_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、小學(xué)奧數(shù)知識點學(xué)習(xí)手冊1. 和差倍問題和差問題和倍問題差倍問題已知條件幾個數(shù)的和與差幾個數(shù)的和與倍數(shù)幾個數(shù)的差與倍數(shù)公式適用范圍已知兩個數(shù)的和,差,倍數(shù)關(guān)系公式(和差)÷2=較小數(shù)較小數(shù)差=較大數(shù)和較小數(shù)=較大數(shù)(和差)÷2=較大數(shù)較大數(shù)差=較小數(shù)和較大數(shù)=較小數(shù)和÷(倍數(shù)1)=小數(shù)小數(shù)×倍數(shù)=大數(shù)和小數(shù)=大數(shù)差÷(倍數(shù)-1)=小數(shù)小數(shù)×倍數(shù)=大數(shù)小數(shù)差=大數(shù)關(guān)鍵問題求出同一條件下的和與差和與倍數(shù)差與倍數(shù)2. 年齡問題(這類問題相對來說比較簡單,只要掌握幾個基本的特征就可以解出題目)兩個人的年齡差是不變的;兩個人的年齡是同時增加或者同

2、時減少的;兩個人的年齡的倍數(shù)是發(fā)生變化的(隨著年齡的增長,兩人的倍數(shù)越來越小(大的比上小的);3. 植樹問題(這類問題結(jié)合實際的比較多,考試中也有類似的變形的題目)基本類型在直線或者不封閉的曲線上植樹,兩端都植樹在直線或者不封閉的曲線上植樹,兩端都不植樹在直線或者不封閉的曲線上植樹,只有一端植樹封閉曲線上植樹基本公式棵數(shù)=段數(shù)1棵距×段數(shù)=總長棵數(shù)=段數(shù)1棵距×段數(shù)=總長棵數(shù)=段數(shù)棵距×段數(shù)=總長關(guān)鍵問題確定所屬類型,從而確定棵數(shù)與段數(shù)的關(guān)系4雞兔同籠問題(都老掉牙了)基本概念:雞兔同籠問題又稱為置換問題、假設(shè)問題,就是把假設(shè)錯的那部分置換出來;基本思路:假設(shè),即

3、假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):假設(shè)后,發(fā)生了和題目條件不同的差,找出這個差是多少;每個事物造成的差是固定的,從而找出出現(xiàn)這個差的原因;再根據(jù)這兩個差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差?;竟剑喊阉须u假設(shè)成兔子:雞數(shù)(兔腳數(shù)×總頭數(shù)總腳數(shù))÷(兔腳數(shù)雞腳數(shù))把所有兔子假設(shè)成雞:兔數(shù)(總腳數(shù)一雞腳數(shù)×總頭數(shù))÷(兔腳數(shù)一雞腳數(shù))關(guān)鍵問題:找出總量的差與單位量的差。5. 盈虧問題基本概念:一定量的對象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對象分組的組數(shù)或?qū)ο蟮目偭炕?/p>

4、思路:先將兩種分配方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,根據(jù)這個關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意求出對象的總量基本題型:一次有余數(shù),另一次不足;基本公式:總份數(shù)(余數(shù)不足數(shù))÷兩次每份數(shù)的差當(dāng)兩次都有余數(shù);基本公式:總份數(shù)(較大余數(shù)一較小余數(shù))÷兩次每份數(shù)的差當(dāng)兩次都不足;基本公式:總份數(shù)(較大不足數(shù)一較小不足數(shù))÷兩次每份數(shù)的差基本特點:對象總量和總的組數(shù)是不變的。關(guān)鍵問題:確定對象總量和總的組數(shù)。6. 牛吃草問題基本思路:假設(shè)每頭牛吃草的速度為“1”份,根據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長速度和總

5、草量?;咎攸c:原草量和新草生長速度是不變的; 關(guān)鍵問題:確定兩個不變的量?;竟剑荷L量=(較長時間×長時間牛頭數(shù)-較短時間×短時間牛頭數(shù))÷(長時間-短時間);總草量=較長時間×長時間牛頭數(shù)-較長時間×生長量;7. 周期循環(huán)與數(shù)表規(guī)律周期現(xiàn)象:事物在運動變化的過程中,某些特征有規(guī)律循環(huán)出現(xiàn)(比如說循環(huán)小數(shù),最常見的就是1/7,142857這六個數(shù)循環(huán)可以上網(wǎng)搜索下,有很多關(guān)于這個的性質(zhì),應(yīng)該是和有趣的)。周期:我們把連續(xù)兩次出現(xiàn)所經(jīng)過的時間叫周期。(比如說時間、星期等等)關(guān)鍵問題:確定循環(huán)周期。在這里在介紹一個基本的常識,閏(run) 年

6、:一年有366天;年份能被4整除;如果年份能被100整除,則年份必須能被400整除;平 年:一年有365天。年份不能被4整除;如果年份能被100整除,但不能被400整除;8. 平均數(shù)(著重要理解平均數(shù)的概念以及它所對應(yīng)的性質(zhì))基本公式:平均數(shù)=總數(shù)量÷總份數(shù) 總數(shù)量=平均數(shù)×總份數(shù) 總份數(shù)=總數(shù)量÷平均數(shù)平均數(shù)=基準(zhǔn)數(shù)每一個數(shù)與基準(zhǔn)數(shù)差的和÷總份數(shù)基本算法:求出總數(shù)量以及總份數(shù),利用基本公式進(jìn)行計算.基準(zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)的差;再求出所有差的和;

7、再求出這些差的平均數(shù);最后求這個差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù),具體關(guān)系見基本公式例:六個人圍成一圈,每人心里想一個數(shù),并把這個數(shù)告訴左右兩個相鄰的兩個人。然后每個人把左右兩個相鄰人告訴自己的數(shù)的平均數(shù)亮出來。問亮出來數(shù)11的人原來心中想的數(shù)是多少?9. 抽屜原理(這類題目考得很多,也可能考得很難,最關(guān)鍵的是如何去構(gòu)造這個抽屜和這個蘋果)抽屜原則一:如果把(n+1)個物體放在n個抽屜里,那么必有一個抽屜中至少放有2個物體。例:把4個物體放在3個抽屜里,也就是把4分解成三個整數(shù)的和,那么就有以下四種情況:4=4+0+0 4=3+1+0 4=2+2+0 4=2+1+1觀察上面四種放物體的

8、方式,我們會發(fā)現(xiàn)一個共同特點:總有那么一個抽屜里有2個或多于2個物體,也就是說必有一個抽屜中至少放有2個物體。抽屜原則二:如果把n個物體放在m個抽屜里,其中n>m,那么必有一個抽屜至少有:k=n/m +1個物體:當(dāng)n不能被m整除時。k=n/m個物體:當(dāng)n能被m整除時。理解知識點:X表示不超過X的最大整數(shù)。例4.351=4;0.321=0;2.9999=2;例題:在1,2,3,···,100這100個正整數(shù)中任意取11個數(shù),證明:其中一定有兩個數(shù)的比值不超過1.510.定義新運算(考察學(xué)生現(xiàn)學(xué)現(xiàn)用的能力)基本概念:定義一種新的運算符號,這個新的運算符號包含有多

9、種基本(混合)運算?;舅悸罚簢?yán)格按照新定義的運算規(guī)則,把已知的數(shù)代入,轉(zhuǎn)化為加減乘除的運算,然后按照基本運算過程、規(guī)律進(jìn)行運算。關(guān)鍵問題:正確理解定義的運算符號的意義。注意事項:新的運算不一定符合運算規(guī)律,特別注意運算順序。每個新定義的運算符號只能在本題中使用。11. 數(shù)列等差數(shù)列:在一列數(shù)中,任意相鄰兩個數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列?;靖拍睿菏醉棧旱炔顢?shù)列的第一個數(shù),一般用a1表示;項數(shù):等差數(shù)列的所有數(shù)的個數(shù),一般用n表示;公差:數(shù)列中任意相鄰兩個數(shù)的差,一般用d表示;通項:表示數(shù)列中每一個數(shù)的公式,一般用an表示;數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示基本思路

10、:等差數(shù)列中涉及五個量:a1 ,an, d, n,sn,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個?;竟剑和椆剑篴n = a1+(n1)d;通項首項(項數(shù)一1)×公差;數(shù)列和公式:sn,= (a1+ an)×n÷2;數(shù)列和(首項末項)×項數(shù)÷2;項數(shù)公式:n= (an+ a1)÷d1;項數(shù)=(末項-首項)÷公差1;公差公式:d =(ana1)÷(n1);公差=(末項首項)÷(項數(shù)1);關(guān)鍵問題:確定已知量和未知量,確定使用的公式

11、;例:    101, 112, 131, 415, 161有點腦筋急轉(zhuǎn)彎的意思, _,192例:一些學(xué)生圍成8圈或圍成4圈(一圈套一圈),已知從外向內(nèi)各圈人數(shù)依次少4人,圍成8圈的最外圈人數(shù)比圍成4圈的最外圈人數(shù)少20人。求學(xué)生的人數(shù)12. 二進(jìn)制及其應(yīng)用十進(jìn)制:用09十個數(shù)字表示,逢10進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2×102+3×10+4。=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-

12、4×10n-5+An-6×10n-7+A3×102+A2×101+A1×100注意:N0=;N=N(其中N是任意自然數(shù))二進(jìn)制:用01兩個數(shù)字表示,逢2進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義。(2)= An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7+A3×22+A2×21+A1×20注意:An不是0就是1。十進(jìn)制化成二進(jìn)制:根據(jù)二進(jìn)制滿2進(jìn)1的特點,用2連續(xù)去除這個數(shù),直到商為0,然后把每次

13、所得的余數(shù)按自下而上依次寫出即可。先找出不大于該數(shù)的2的n次方,再求它們的差,再找不大于這個差的2的n次方,依此方法一直找到差為0,按照二進(jìn)制展開式特點即可寫出。13.加法乘法原理和幾何計數(shù)加法原理:如果完成一件任務(wù)有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法,在第n類方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+ m2. +mn種不同的方法。關(guān)鍵問題:確定工作的分類方法?;咎卣鳎好恳环N方法都可完成任務(wù)。乘法原理:如果完成一件任務(wù)需要分成n個步驟進(jìn)行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法不管前面n-1步用哪種方法,第n步總有m

14、n種方法,那么完成這件任務(wù)共有:m1×m2.×mn種不同的方法。關(guān)鍵問題:確定工作的完成步驟?;咎卣鳎好恳徊街荒芡瓿扇蝿?wù)的一部分。直線:一點在直線或空間沿一定方向或相反方向運動,形成的軌跡。直線特點:沒有端點,沒有長度。線段:直線上任意兩點間的距離。這兩點叫端點。線段特點:有兩個端點,有長度。射線:把直線的一端無限延長。射線特點:只有一個端點;沒有長度。數(shù)線段規(guī)律:總數(shù)1+2+3+(點數(shù)一1);數(shù)角規(guī)律=1+2+3+(射線數(shù)一1);數(shù)長方形規(guī)律:個數(shù)=長的線段數(shù)×寬的線段數(shù):數(shù)長方形規(guī)律:個數(shù)=1×1+2×2+3×3+行數(shù)×

15、;列數(shù)14質(zhì)數(shù)與合數(shù)質(zhì)數(shù):一個數(shù)除了1和它本身之外,沒有別的約數(shù),這個數(shù)叫做質(zhì)數(shù),也叫做素數(shù)。合數(shù):一個數(shù)除了1和它本身之外,還有別的約數(shù),這個數(shù)叫做合數(shù)。質(zhì)因數(shù):如果某個質(zhì)數(shù)是某個數(shù)的約數(shù),那么這個質(zhì)數(shù)叫做這個數(shù)的質(zhì)因數(shù)。分解質(zhì)因數(shù):把一個數(shù)用質(zhì)數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式:N=,其中a1、a2、a3an都是合數(shù)N的質(zhì)因數(shù),且a1<a2<a3<<an。求約數(shù)個數(shù)的公式:P=(r1+1)×(r2+1)×(r3+1)××(rn+1)互質(zhì)數(shù)

16、:如果兩個數(shù)的最大公約數(shù)是1,這兩個數(shù)叫做互質(zhì)數(shù)。15. 約數(shù)與倍數(shù)約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。公約數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù);其中最大的一個,叫做這幾個數(shù)的最大公約數(shù)。最大公約數(shù)的性質(zhì):1、 幾個數(shù)都除以它們的最大公約數(shù),所得的幾個商是互質(zhì)數(shù)。2、 幾個數(shù)的最大公約數(shù)都是這幾個數(shù)的約數(shù)。3、 幾個數(shù)的公約數(shù),都是這幾個數(shù)的最大公約數(shù)的約數(shù)。4、 幾個數(shù)都乘以一個自然數(shù)m,所得的積的最大公約數(shù)等于這幾個數(shù)的最大公約數(shù)乘以m。例如:12的約數(shù)有1、2、3、4、6、12;18的約數(shù)有:1、2、3、6、9、18;那么12和18的公約數(shù)有:1、2

17、、3、6;那么12和18最大的公約數(shù)是:6,記作(12,18)=6;求最大公約數(shù)基本方法:1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來。2、短除法:先找公有的約數(shù),然后相乘。3、輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個余數(shù),就是所求的最大公約數(shù)。公倍數(shù):幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù);其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù)。12的倍數(shù)有:12、24、36、48;18的倍數(shù)有:18、36、54、72;那么12和18的公倍數(shù)有:36、72、108;那么12和18最小的公倍數(shù)是36,記作12,18=36;最小公倍數(shù)的性質(zhì): 1、兩個數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的

18、倍數(shù)。 2、兩個數(shù)最大公約數(shù)與最小公倍數(shù)的乘積等于這兩個數(shù)的乘積。求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質(zhì)因數(shù)的方法16. 數(shù)的整除一、基本概念和符號:1、整除:如果一個整數(shù)a,除以一個自然數(shù)b,得到一個整數(shù)商c,而且沒有余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。2、常用符號:整除符號“|”,不能整除符號“”;因為符號“”,所以的符號“”;二、整除判斷方法這些整除判斷方法的證明,主要是用分拆的思想,比如說abcd,代表一個三位數(shù),可以拆成999a+99b+9c+a+b+c+d等等:1. 能被2、5整除:末位上的數(shù)字能被2、5整除。2. 能被4、25整除:末兩位的數(shù)字所

19、組成的數(shù)能被4、25整除。3. 能被8、125整除:末三位的數(shù)字所組成的數(shù)能被8、125整除。4. 能被3、9整除:各個數(shù)位上數(shù)字的和能被3、9整除。5. 能被7整除:末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除。逐次去掉最后一位數(shù)字并減去末位數(shù)字的2倍后能被7整除。6. 能被11整除:末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被11整除。奇數(shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。逐次去掉最后一位數(shù)字并減去末位數(shù)字后能被11整除。7. 能被13整除:末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被13整除。逐次去掉最后一位數(shù)字并減去末位數(shù)字的

20、9倍后能被13整除。三、整除的性質(zhì):1. 如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。2. 如果a能被b整除,c是整數(shù),那么a乘以c也能被b整除。3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。4. 如果a能被b、c整除,那么a也能被b和c的最小公倍數(shù)整除。附一基本定理:在N進(jìn)制中一個數(shù)被N-1正整除后其余數(shù)是個位數(shù)之和除以除數(shù)的余數(shù),如果被N+1整除的話,其余數(shù)就是奇數(shù)位數(shù)字減去偶數(shù)位數(shù)字除以N+1的余數(shù)【例子:在10進(jìn)制中就是被9還有11整除的性質(zhì),擴(kuò)展到N進(jìn)制后,同樣適用這個定理用起來有的時候很方便去解決一些比較困難的題目,不需要進(jìn)制之間的轉(zhuǎn)換】17. 余數(shù)

21、及其應(yīng)用基本概念:對任意自然數(shù)a、b、q、r,如果使得a÷b=qr,且0<r<b,那么r叫做a除以b的余數(shù),q叫做a除以b的不完全商。余數(shù)的性質(zhì):余數(shù)小于除數(shù)。若a、b除以c的余數(shù)相同,則c|a-b或c|b-a。a與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。a與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù)。18. 余數(shù)、同余與周期一、同余的定義:若兩個整數(shù)a、b除以m的余數(shù)相同,則稱a、b對于模m同余。已知三個整數(shù)a、b、m,如果m|a-b,就稱a、b對于模m同余,記作ab(mod m),讀作a同余于b模m。二、同余的

22、性質(zhì):自身性:aa(mod m);對稱性:若ab(mod m),則ba(mod m);傳遞性:若ab(mod m),bc(mod m),則a c(mod m);和差性:若ab(mod m),cd(mod m),則a+cb+d(mod m),a-cb-d(mod m);相乘性:若a b(mod m),cd(mod m),則a×c b×d(mod m);乘方性:若ab(mod m),則anbn(mod m);同倍性:若a b(mod m),整數(shù)c,則a×c b×c(mod m×c);三、關(guān)于乘方的預(yù)備知識:若A=a×b,則MA=Ma

23、15;b=(Ma)b若B=c+d則MB=Mc+d=Mc×Md四、被3、9、11除后的余數(shù)特征:一個自然數(shù)M,n表示M的各個數(shù)位上數(shù)字的和,則Mn(mod 9)或(mod 3);一個自然數(shù)M,X表示M的各個奇數(shù)位上數(shù)字的和,Y表示M的各個偶數(shù)數(shù)位上數(shù)字的和,則MY-X或M11-(X-Y)(mod 11);補(bǔ)充一個定理:費爾馬小定理:如果p是質(zhì)數(shù)(素數(shù)),a是自然數(shù),且a不能被p整除,則ap-11(mod p)。19. 分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用基本概念與性質(zhì):分?jǐn)?shù):把單位“1”平均分成幾份,表示這樣的一份或幾份的數(shù)。分?jǐn)?shù)的性質(zhì):分?jǐn)?shù)的分子和分母同時乘以或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。

24、分?jǐn)?shù)單位:把單位“1”平均分成幾份,表示這樣一份的數(shù)。百分?jǐn)?shù):表示一個數(shù)是另一個數(shù)百分之幾的數(shù)。常用方法:逆向思維方法:從題目提供條件的反方向(或結(jié)果)進(jìn)行思考。對應(yīng)思維方法:找出題目中具體的量與它所占的率的直接對應(yīng)關(guān)系。轉(zhuǎn)化思維方法:把一類應(yīng)用題轉(zhuǎn)化成另一類應(yīng)用題進(jìn)行解答。最常見的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關(guān)系;把不同的標(biāo)準(zhǔn)(在分?jǐn)?shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見的處理方法是確定不同的標(biāo)準(zhǔn)為一倍量。假設(shè)思維方法:為了解題的方便,可以把題目中不相等的量假設(shè)成相等或者假設(shè)某種情況成立,計算出相應(yīng)的結(jié)果,然后再進(jìn)行調(diào)整,求出最后結(jié)果。量不變思維方法:在變化的各個量當(dāng)中,總有一

25、個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。替換思維方法:用一種量代替另一種量,從而使數(shù)量關(guān)系單一化、量率關(guān)系明朗化。同倍率法:總量和分量之間按照同分率變化的規(guī)律進(jìn)行處理。濃度配比法:一般應(yīng)用于總量和分量都發(fā)生變化的狀況。20. 分?jǐn)?shù)大小的比較基本方法:通分分子法:使所有分?jǐn)?shù)的分子相同,根據(jù)同分子分?jǐn)?shù)大小和分母的關(guān)系比較。通分分母法:使所有分?jǐn)?shù)的分母相同,根據(jù)同分母分?jǐn)?shù)大小和分子的關(guān)系比較?;鶞?zhǔn)數(shù)法:確定一個標(biāo)準(zhǔn),使所有的分?jǐn)?shù)都和它進(jìn)行比較。分子和

26、分母大小比較法:當(dāng)分子和分母的差一定時,分子或分母越大的分?jǐn)?shù)值越大。倍率比較法:當(dāng)比較兩個分子或分母同時變化時分?jǐn)?shù)的大小,除了運用以上方法外,可以用同倍率的變化關(guān)系比較分?jǐn)?shù)的大小。(具體運用見同倍率變化規(guī)律)轉(zhuǎn)化比較方法:把所有分?jǐn)?shù)轉(zhuǎn)化成小數(shù)(求出分?jǐn)?shù)的值)后進(jìn)行比較。倍數(shù)比較法:用一個數(shù)除以另一個數(shù),結(jié)果得數(shù)和1進(jìn)行比較。大小比較法:用一個分?jǐn)?shù)減去另一個分?jǐn)?shù),得出的數(shù)和0比較。倒數(shù)比較法:利用倒數(shù)比較大小,然后確定原數(shù)的大小?;鶞?zhǔn)數(shù)比較法:確定一個基準(zhǔn)數(shù),每一個數(shù)與基準(zhǔn)數(shù)比較。21.分?jǐn)?shù)拆分其它的拆分方法同學(xué)們還能想到嗎?22. 完全平方數(shù)完全平方數(shù)特征:1. 末位數(shù)字只能是:0、1、4、5

27、、6、9;反之不成立。2. 除以3余0或余1;反之不成立。3. 除以4余0或余1;反之不成立。4. 約數(shù)個數(shù)為奇數(shù);反之成立。5. 奇數(shù)的平方的十位數(shù)字為偶數(shù);反之不成立。6. 奇數(shù)平方個位數(shù)字是奇數(shù);偶數(shù)平方個位數(shù)字是偶數(shù)。7. 兩個相臨整數(shù)的平方之間不可能再有平方數(shù)。平方差公式:X2-Y2=(X-Y)(X+Y)完全平方和公式:(X+Y)2=X2+2XY+Y2完全平方差公式:(X-Y)2=X2-2XY+Y223. 比和比例比:兩個數(shù)相除又叫兩個數(shù)的比。比號前面的數(shù)叫比的前項,比號后面的數(shù)叫比的后項。比值:比的前項除以后項的商,叫做比值。比的性質(zhì):比的前項和后項同時乘以或除以相同的數(shù)(零除外)

28、,比值不變。比例:表示兩個比相等的式子叫做比例。a:b=c:d或比例的性質(zhì):兩個外項積等于兩個內(nèi)項積(交叉相乘),ad=bc。正比例:若A擴(kuò)大或縮小幾倍,B也擴(kuò)大或縮小幾倍(AB的商不變時),則A與B成正比。反比例:若A擴(kuò)大或縮小幾倍,B也縮小或擴(kuò)大幾倍(AB的積不變時),則A與B成反比。比例尺:圖上距離與實際距離的比叫做比例尺。按比例分配:把幾個數(shù)按一定比例分成幾份,叫按比例分配。24. 綜合行程(最重要的就是理清楚這個行程的過程,還有時間速度路程之間的對應(yīng)關(guān)系)基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、路程三者之間的關(guān)系.基本公式:路程=速度×時間;路程

29、47;時間=速度;路程÷速度=時間關(guān)鍵問題:確定運動過程中的位置和方向。相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)追及問題:追及時間路程差÷速度差(寫出其他公式)流水問題:順?biāo)谐?(船速+水速)×順?biāo)畷r間逆水行程=(船速-水速)×逆水時間順?biāo)俣?船速+水速逆水速度=船速-水速靜水速度=(順?biāo)俣?逆水速度)÷2水 速=(順?biāo)俣?逆水速度)÷2流水問題:關(guān)鍵是確定物體所運動的速度,參照以上公式。過橋問題:關(guān)鍵是確定物體所運動的路程,參照以上公式。主要方法:畫線段圖法基本題型:已知路程(相遇路程、追及路程)、時

30、間(相遇時間、追及時間)、速度(速度和、速度差)中任意兩個量,求第三個量。例【第九屆華杯賽總決賽二試試題】:如圖,正方形跑道ABCD甲、乙、丙三人同時從A點出發(fā)同向跑步,他們的速度分別為每秒5米、4米、3米若干時間后,甲首次開始看到乙和丙都與自己在正方形的同一條邊上,且他們在自己的前方從此時刻算起,又經(jīng)過21秒,甲乙丙三人處在跑道的同一位置,這是出發(fā)后三人第一次處在同一位置請計算出正方形的周長的所有可能值例:小明從A到B,如果按13公里/小時行進(jìn),則比規(guī)定的時間晚到5分鐘到達(dá);如果按15公里/小時行進(jìn),則比規(guī)定的時間提前5分鐘到達(dá);問小明用怎樣的速度行進(jìn),可按規(guī)定時間到達(dá)。25. 邏輯推理(主

31、要考察學(xué)生的邏輯思維以及處理這類問題的一些最基本的方法)基本方法簡介:條件分析假設(shè)法:假設(shè)可能情況中的一種成立,然后按照這個假設(shè)去判斷,如果有與題設(shè)條件矛盾的情況,說明該假設(shè)情況是不成立的,那么與他的相反情況是成立的。例如,假設(shè)a是偶數(shù)成立,在判斷過程中出現(xiàn)了矛盾,那么a一定是奇數(shù)。條件分析列表法:當(dāng)題設(shè)條件比較多,需要多次假設(shè)才能完成時,就需要進(jìn)行列表來輔助分析。列表法就是把題設(shè)的條件全部表示在一個長方形表格中,表格的行、列分別表示不同的對象與情況,觀察表格內(nèi)的題設(shè)情況,運用邏輯規(guī)律進(jìn)行判斷。條件分析圖表法:當(dāng)兩個對象之間只有兩種關(guān)系時,就可用連線表示兩個對象之間的關(guān)系,有連線則表示“是,有

32、”等肯定的狀態(tài),沒有連線則表示否定的狀態(tài)。例如A和B兩人之間有認(rèn)識或不認(rèn)識兩種狀態(tài),有連線表示認(rèn)識,沒有表示不認(rèn)識。邏輯計算:在推理的過程中除了要進(jìn)行條件分析的推理之外,還要進(jìn)行相應(yīng)的計算,根據(jù)計算的結(jié)果為推理提供一個新的判斷篩選條件。簡單歸納與推理:根據(jù)題目提供的特征和數(shù)據(jù),分析其中存在的規(guī)律和方法,并從特殊情況推廣到一般情況,并遞推出相關(guān)的關(guān)系式,從而得到問題的解決。例:一個村子里,有50戶人家,每家都養(yǎng)了一條狗?,F(xiàn)在,發(fā)現(xiàn)村子里面出現(xiàn)了n只瘋狗,村里規(guī)定,誰要是發(fā)現(xiàn)了自己的狗是瘋狗,就要將自己的狗槍斃。但問題是,村子里面的人只能看出別人家的狗是不是瘋狗,而不能看出自己的狗是不是瘋的,如果

33、看出別人家的狗是瘋狗,也不能告訴別人。于是大家開始觀察,第一天晚上,沒有槍聲,第二天晚上,沒有槍聲,第三天晚上,槍聲響起(具體幾槍不清楚),問村子里有幾只瘋狗?例:有個智者去找神仙,走到一個三岔路口,不知道往左走還是往右。路口邊站著兩個天使,他倆一個永遠(yuǎn)說真話,另一個永遠(yuǎn)說假話,現(xiàn)在要求這個智者只能向其中一位天使問一句話,就確定神仙的方位。請問:這個智者怎么問才能有結(jié)果這兩個例題都是很經(jīng)典的邏輯推斷題目,類似的題目有很多,大家有興趣可以去網(wǎng)上去搜索下,然后自己分析分析。這對提高自己的邏輯思維能力會有很大的幫助。?26.幾何(小學(xué)幾何是難點,很多學(xué)生對這部分知識掌握的不夠牢固對這部分知識,以后我

34、會專門地詳細(xì)地做一個專題,供大家參考)基本思路:在一些面積的計算上,不能直接運用公式的情況下,一般需要對圖形進(jìn)行割補(bǔ),平移、旋轉(zhuǎn)、翻折、分解、變形、重疊等,使不規(guī)則的圖形變?yōu)橐?guī)則的圖形進(jìn)行計算;另外需要掌握和記憶一些常規(guī)的面積規(guī)律。常用方法:1. 連輔助線方法2. 利用等底等高的兩個三角形面積相等。3. 大膽假設(shè)(有些點的設(shè)置題目中說的是任意點,解題時可把任意點設(shè)置在特殊位置上)。4. 利用特殊規(guī)律等腰直角三角形,已知任意一條邊都可求出面積。(斜邊的平方除以4等于等腰直角三角形的面積)梯形對角線連線后,兩腰部分面積相等。圓的面積占外接正方形面積的78.5%。例題【第八屆華杯賽決賽二試試題】:問

35、題:四邊形ABCD,A=C=45度,AB=CD=15厘米,ABC=105度,求ABCD面積。 目前我只有初中做法,要使用四點共圓?!镜?屆華杯賽小學(xué)組決賽第二試】。 示意圖如下 例題ABCD為正方形,AD長6厘米,CFE比ADF的面積大6平方厘米,求CE的長度?27. 立體圖形例:正方體的每一條棱長是一個一位數(shù),表面的每個正方形面積是一個兩位數(shù),整個表面積是一個三位數(shù)。而且若將正方形面積的兩位數(shù)中兩個數(shù)碼調(diào)過來則恰好是三位數(shù)的十位與個位上的數(shù)碼。求這個正方體的體積。例一個長、寬和高分別為21cm,15cm和12cm的長方體,現(xiàn)從它的上面盡可能大地切下一個正方體,然后從剩余的部分再盡可能大地切下

36、一個正方體,最后再從第二次剩余的部分盡可能大地切下一個正方體,剩下的體積是多少立方厘米?28. 時鐘問題快慢表問題基本思路:1、 按照行程問題中的思維方法解題;2、 不同的表當(dāng)成速度不同的運動物體;3、 路程的單位是分格(表一周為60分格);4、 時間是標(biāo)準(zhǔn)表所經(jīng)過的時間;5、 合理利用行程問題中的比例關(guān)系;例:晚上,小偉做作業(yè)時,看了一下手表,發(fā)現(xiàn)快10點了,而且更有趣的是,此時10字正好在時針與分針的中間,這時應(yīng)該是9點幾分?例:1個小時內(nèi)分針和秒針共重疊( )次答案是60次 做題時候要仔細(xì)在貼個公務(wù)員考試系列的題目其實這類題目,和小學(xué)中的奧數(shù)題有異曲同工之處1.從5時整開始,經(jīng)過多長時間

37、后,時針與分針第一次成了直線?2. 從6時整開始,經(jīng)過多少分鐘后,時針與分針第一次重合?3. 在8時多少分,時針與分針垂直?4從9點整開始,經(jīng)過多少分,在幾點鐘,時針與分針第一次成直線?5. 一個指在九點鐘的時鐘,分針追上時針需要多少分鐘?29. 濃度與配比經(jīng)驗總結(jié):在配比的過程中存在這樣的一個反比例關(guān)系,進(jìn)行混合的兩種溶液的重量和他們濃度的變化成反比。溶質(zhì):溶解在其它物質(zhì)里的物質(zhì)(例如糖、鹽、酒精等)叫溶質(zhì)。溶劑:溶解其它物質(zhì)的物質(zhì)(例如水、汽油等)叫溶劑。溶液:溶質(zhì)和溶劑混合成的液體(例如鹽水、糖水等)叫溶液?;竟剑喝芤褐亓?溶質(zhì)重量+溶劑重量;溶質(zhì)重量=溶液重量×濃度;理論

38、部分小練習(xí):試推出溶質(zhì)、溶液、溶劑三者的其它公式。經(jīng)驗總結(jié):在配比的過程中存在這樣的一個反比例關(guān)系,進(jìn)行混合的兩種溶液的重量和他們濃度的變化成反比。30. 經(jīng)濟(jì)問題(這類問題和實際生活也結(jié)合的比較緊密,只要搞清楚了一些基本的概念,以及各個量之間的關(guān)系,一些問題就能迎刃而解)利潤的百分?jǐn)?shù)=(賣價-成本)÷成本×100%;賣價=成本×(1+利潤的百分?jǐn)?shù));成本=賣價÷(1+利潤的百分?jǐn)?shù));商品的定價按照期望的利潤來確定;定價=成本×(1+期望利潤的百分?jǐn)?shù));本金:儲蓄的金額;利率:利息和本金的比;利息=本金×利率×期數(shù);含稅價格

39、=不含稅價格×(1+增值稅稅率);31. 簡單方程代數(shù)式:用運算符號(加減乘除)連接起來的字母或者數(shù)字。方程:含有未知數(shù)的等式叫方程。列方程:把兩個或幾個相等的代數(shù)式用等號連起來。列方程關(guān)鍵問題:用兩個以上的不同代數(shù)式表示同一個數(shù)。等式性質(zhì):等式兩邊同時加上或減去一個數(shù),等式不變;等式兩邊同時乘以或除以一個數(shù)(除0),等式不變。移項:把數(shù)或式子改變符號后從方程等號的一邊移到另一邊;移項規(guī)則:先移加減,后變乘除;先去大括號,再去中括號,最后去小括號。加去括號規(guī)則:在只有加減運算的算式里,如果括號前面是“+”號,則添、去括號,括號里面的運算符號都不變;如果括號前面是“”號,添、去括號,括

40、號里面的運算符號都要改變;括號里面的數(shù)前沒有“+”或“”的,都按有“+”處理。移項關(guān)鍵問題:運用等式的性質(zhì),移項規(guī)則,加、去括號規(guī)則。乘法分配率:a(b+c)=ab+ac解方程步驟:去分母;去括號;移項;合并同類項;求解;方程組:幾個二元一次方程組成的一組方程。解方程組的步驟:消元;按一元一次方程步驟。消元的方法:加減消元;代入消元。32. 不定方程一次不定方程:含有兩個未知數(shù)的一個方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程;常規(guī)方法:觀察法、試驗法、枚舉法;多元不定方程:含有三個未知數(shù)的方程叫三元一次方程,它的解也不唯一;多元不定方程解法:根據(jù)已知條件確定一個未知數(shù)

41、的值,或者消去一個未知數(shù),這樣就把三元一次方程變成二元一次不定方程,按照二元一次不定方程解即可;涉及知識點:列方程、數(shù)的整除、大小比較;解不定方程的步驟:1、列方程;2、消元;3、寫出表達(dá)式;4、確定范圍;5、確定特征;6、確定答案;技巧總結(jié):A、寫出表達(dá)式的技巧:用特征不明顯的未知數(shù)表示特征明顯的未知數(shù),同時考慮用范圍小的未知數(shù)表示范圍大的未知數(shù);B、消元技巧:消掉范圍大的未知數(shù);例:某班同學(xué)分成若干小組去值樹,若每組植樹n棵,且n組.例:求不定方程的正整數(shù)解提示:可以從z的范圍入手,分類后再對x和y進(jìn)行討論33. 循環(huán)小數(shù)一、把循環(huán)小數(shù)的小數(shù)部分化成分?jǐn)?shù)的規(guī)則純循環(huán)小數(shù)小數(shù)部分化成分?jǐn)?shù):將

42、一個循環(huán)節(jié)的數(shù)字組成的數(shù)作為分子,分母的各位都是9,9的個數(shù)與循環(huán)節(jié)的位數(shù)相同,最后能約分的再約分?;煅h(huán)小數(shù)小數(shù)部分化成分?jǐn)?shù):分子是第二個循環(huán)節(jié)以前的小數(shù)部分的數(shù)字組成的數(shù)與不循環(huán)部分的數(shù)字所組成的數(shù)之差,分母的頭幾位數(shù)字是9,9的個數(shù)與一個循環(huán)節(jié)的位數(shù)相同,末幾位是0,0的個數(shù)與不循環(huán)部分的位數(shù)相同。二、分?jǐn)?shù)轉(zhuǎn)化成循環(huán)小數(shù)的判斷方法:一個最簡分?jǐn)?shù),如果分母中既含有質(zhì)因數(shù)2和5,又含有2和5以外的質(zhì)因數(shù),那么這個分?jǐn)?shù)化成的小數(shù)必定是混循環(huán)小數(shù)。一個最簡分?jǐn)?shù),如果分母中只含有2和5以外的質(zhì)因數(shù),那么這個分?jǐn)?shù)化成的小數(shù)必定是純循環(huán)小數(shù)。例 從1到9中任意取兩個數(shù)字,一個作分子,一個作分母,組成一

43、個分?jǐn)?shù),所有分?jǐn)?shù)中,循環(huán)小數(shù)有多少個?【第一屆五年級希望杯第一試第17題】【附:關(guān)于142857這幾個數(shù)其實隱藏著很大的秘密】如果您發(fā)現(xiàn)了它的真正神奇秘密142857×1142857(原數(shù)字)142857×2285714(輪值)142857×3428571(輪值)142857×4571428(輪值)142857×5714285(輪值)142857×6857142(輪值)142857×7999999(放假由9代班)142857×81142856(7分身,即分為頭一個數(shù)字1與尾數(shù)6,數(shù)列內(nèi)少了7)142857×

44、;91285713(4分身)142857×101428570(1分身)142857×111571427(8分身)142857×121714284(5分身)142857×131857141(2分身)142857×141999998(9也需要分身變大)繼續(xù)算下去以上各數(shù)的單數(shù)和都是“9”;有可能藏著一個大秘密。最后添幾題比較有難度的華杯賽的題目:1.將l,2,349,50任意分成l0組,每組5個數(shù),在每組中取數(shù)值居中的那個數(shù)為“中位數(shù)”,求這l0個中位數(shù)之和的最大值及最小值【第六屆華杯賽決賽一試試題】2.八個學(xué)生8道問題。(a)若每道題至少被5人解

45、出,請說明可以找到兩個學(xué)生,每道題至少被這兩個學(xué)生中的一個解出。(b)如果每道題只有4個學(xué)生解出,那么(a)的結(jié)論一般不成立。試構(gòu)造一個例子說明這點【第六屆華杯賽決賽二試試題】。3. 用無色透明玻璃小正方體和紅色玻璃小正方體拼成一個大正方體(如右圖),大正方體內(nèi)的對角線,所穿過的小正方體都是紅色玻璃小正方 體,其它部分都是無色透明玻璃小正方體,小紅正方體共用了40l個.問:無色透明小正方體用了多少個?【第七屆華杯賽決賽一試試題】4.3個三位數(shù)乘積的算式 =234235286,(其中abc)在校對時,發(fā)現(xiàn)右邊的積的數(shù)字順序出現(xiàn)錯誤,但是知道最后一位6是正確的。問:原式中的是多少【第七屆華杯賽決賽

46、二試試題】?5.對干自然數(shù)a,表示a的各位數(shù)字之和。求同時滿足下列條件的所有的自然數(shù)(1)a為奇數(shù),且不是3的倍數(shù);(2)m50,m為自然數(shù)?!镜谄邔萌A杯賽決賽二試試題】1.【解】設(shè)10個“居中數(shù)”從小到大是,它們所代表的那組數(shù)分別為第一組,第二組,第十組.比第一組中兩個數(shù)大,所以3比第二組中兩個數(shù)大,又比第一組的前3個數(shù)大,所以6,依次類推,比第十組中兩個數(shù)大,又比前九組中,每一組的前3個數(shù)大,所以30,因此,居中和S36十30165(1)另一方面, 比第十組中兩個數(shù)小,所以50248. 比第九組中兩個數(shù)小,又比第十組的后3個數(shù)小,所以50545依此類推:比第一組中兩個數(shù)小,又比后九組中,每

47、一組的后3個數(shù)小,所以509×3221.因此。居中和 S484521345(2)(1)(2)中的等號都可以成立,例如分組(1,2,3,49,50),(4,5,6,47,48),(7,8,9,45,46),(10,11,12,43,44),(13,14,15,41,42),(16,17,18,39,40),(19,20,21,37,38),(22,23,24,35,36),(25,26,27,33,34),(28,29,30,31,32)使得S165,這是最小的居中和,又如分組(1,2,21,22,23),(3,4,2425,26),(5,6,27,28,29);(7,8,30,31,

48、32),(9,10,33,34,35),(11,12,36,37,38),(13,14,39,40,41),(15,16,42,43,44),(17,18,45,46 47),(19,20,48,49,50)使得S345,這是最大的居中和。答:最大的居中和是345,最小的居中和是165。2.【解】(a)設(shè)解題最多的人解出d道題.將解出的題數(shù)相加,八個人至多解出8d道,另一方面,每題至少被5個人解出,八個人至少解出8×5道題。所以8d8×5,d5 d8時,結(jié)論成立d7時,必有人解出剩下的一道題,這兩人為所求,d6時,剩下的兩道題,各有5人解出,557。所以至少有一人同時解出這兩道題,他與解題最多的人為所求,d

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論