




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、積分學 定積分二重積分三重積分積分域 區(qū)間域 平面域 空間域 曲線積分曲線積分曲線域曲線域曲面域曲面域曲線積分曲線積分曲面積分曲面積分對弧長的曲線積分對坐標的曲線積分對面積的曲面積分對坐標的曲面積分曲面積分曲面積分曲線積分與曲面積分 第四節(jié)一、對弧長的曲線積分一、對弧長的曲線積分二、對坐標的曲線積分二、對坐標的曲線積分機動 目錄 上頁 下頁 返回 結(jié)束 曲線積分 第八章 AB一、對弧長的曲線積分的概念與性質(zhì)一、對弧長的曲線積分的概念與性質(zhì)假設(shè)曲線形細長構(gòu)件在空間所占弧段為AB , 其線密度為),(zyx“大化小, 常代變, 近似和, 求極限” kkkks),(可得nk 10limM為計算此構(gòu)件
2、的質(zhì)量,ks1kMkM),(kkk1.1.引例引例: 曲線形構(gòu)件的質(zhì)量采用機動 目錄 上頁 下頁 返回 結(jié)束 設(shè) 是空間中一條有限長的光滑曲線,義在 上的一個有界函數(shù), kkkksf),(都存在,),(zyxf上對弧長的曲線積分,記作szyxfd),(若通過對 的任意分割局部的任意取點, 2. .定義定義是定),(zyxf下列“乘積和式極限”則稱此極限為函數(shù)在曲線或第一類曲線積分.),(zyxf稱為被積函數(shù), 稱為積分弧段 .曲線形構(gòu)件的質(zhì)量szyxMd),(nk 10limks1kMkM),(kkk和對機動 目錄 上頁 下頁 返回 結(jié)束 如果 L 是 xoy 面上的曲線弧 ,kknkksf)
3、,(lim10Lsyxfd),(如果 L 是閉曲線 , 則記為.d),(Lsyxf則定義對弧長的曲線積分為機動 目錄 上頁 下頁 返回 結(jié)束 思考思考:(1) 若在 L 上 f (x, y)1, ?d 表示什么問Ls(2) 定積分是否可看作對弧長曲線積分的特例 ? 否! 對弧長的曲線積分要求 ds 0 ,但定積分中dx 可能為負.3. 性質(zhì)性質(zhì)szyxfd ),() 1 (szyxfkd),()2((k 為常數(shù))szyxfd),()3( 由 組成) 21, sd)4( l 為曲線弧 的長度),(zyxgszyxfd),(szyxgd),(szyxfkd),(l21d),(d),(szyxfsz
4、yxf機動 目錄 上頁 下頁 返回 結(jié)束 tttttfsdyxfLd)()()(, )(),(22二、對弧長的曲線積分的計算法二、對弧長的曲線積分的計算法基本思路基本思路:計算定積分轉(zhuǎn) 化定理定理:),(yxf設(shè)且)()(tty上的連續(xù)函數(shù),證證:是定義在光滑曲線弧則曲線積分),(:txL,d),(存在Lsyxf求曲線積分根據(jù)定義 kknkksf),(lim10Lsyxfd),(機動 目錄 上頁 下頁 返回 結(jié)束 , ,1kkktt點),(kktttskkttkd)()(122,)()(22kkktnk 10limLsyxfd),(kkkt)()(22 )(, )(kkf連續(xù)注意)()(22t
5、t設(shè)各分點對應(yīng)參數(shù)為), 1 ,0(nktk對應(yīng)參數(shù)為 則,1kkkttnk 10limkkkt)()(22 )(, )(kkf機動 目錄 上頁 下頁 返回 結(jié)束 xdydsdxyoLsyxfd),(tttttfd)()()(),(22說明說明:, 0, 0) 1 (kkts因此積分限必須滿足!(2) 注意到 22)(d)(ddyxstttd)()(22x因此上述計算公式相當于“換元法”. 因此機動 目錄 上頁 下頁 返回 結(jié)束 如果曲線 L 的方程為),()(bxaxy則有Lsyxfd),(如果方程為極坐標形式:),()(: rrL則syxfLd),()sin)(,cos)(rrf推廣推廣:
6、 設(shè)空間曲線弧的參數(shù)方程為)()(, )(),(:ttztytx則szyxfd),(ttttd)()()(222xx d)(12d)()(22rrbaxxf) )(,()(),(, )(tttf機動 目錄 上頁 下頁 返回 結(jié)束 例例1. 計算,dLsx其中 L 是拋物線2xy 與點 B (1,1) 之間的一段弧 . 解解:)10(:2xxyLLsxd10 xxxd)2(12xxxd4110210232)41 (121x)155(121上點 O (0,0)1Lxy2xy o) 1 , 1 (B機動 目錄 上頁 下頁 返回 結(jié)束 例例2. 計算半徑為 R ,中心角為2的圓弧 L 對于它的對稱軸的
7、轉(zhuǎn)動慣量I (設(shè)線密度 = 1). 解解: 建立坐標系如圖,R xyoLsyILd2d)cos()sin(sin2222RRRdsin23 R0342sin22 R)cossin(3 R則 )(sincos:RyRxL機動 目錄 上頁 下頁 返回 結(jié)束 例例3. 計算,dsxIL其中L為雙紐線)0()()(222222ayxayx解解: 在極坐標系下它在第一象限部分為)40(2cos:1 arL利用對稱性 , 得sxILd414022d)()(cos4rrr402dcos4a222a,2cos:22arLyox機動 目錄 上頁 下頁 返回 結(jié)束 例例4. 計算曲線積分 ,d)(222szyx其
8、中為螺旋的一段弧.解解: szyxd)(22220222)()sin()cos(t ktatattkakad202222202322223tktaka)43(3222222kakatktatad)cos()sin(222)20(,sin,costtkztaytax線機動 目錄 上頁 下頁 返回 結(jié)束 例例5. 計算,d2sx其中為球面 2222azyx被平面 所截的圓周. 0zyx解解: 由對稱性可知sx d2szyxsxd)(31d2222sa d312aa2312332asy d2sz d2機動 目錄 上頁 下頁 返回 結(jié)束 思考思考: 例5中 改為0)1()1(2222zyxazyx計算
9、?d2sx解解: 令 11zZyYxX0 :2222ZYXaZYX, 則sx d2sXd) 1(2sXd2332a)131(22aasX d2sda2圓的形心在原點, 故0XaX22, 如何機動 目錄 上頁 下頁 返回 結(jié)束 d d s例例6. 計算,d)(222szyxI其中為球面22yx 解解: , 11)(:24122121zxyx:202)sin2(2)cos2(2)sin2(18d22920Id2cos221z. 1的交線與平面 zx292 z化為參數(shù)方程 21cos2x sin2y則機動 目錄 上頁 下頁 返回 結(jié)束 例例7. 有一半圓弧cosRx ),0(其線密度 ,2解解:co
10、sdd2RskFxdcos2Rksindd2RskFydsin2RkRRoxy0dcos2RkFx0dsin2RkFy0cossin2RkRk40sincos2RkRk2故所求引力為),(yx,sinRy 求它對原點處單位質(zhì)量質(zhì)點的引力. RkRkF2,4機動 目錄 上頁 下頁 返回 結(jié)束 三、三、 對坐標的曲線積分的概念與性質(zhì)對坐標的曲線積分的概念與性質(zhì)1. 引例引例: 變力沿曲線所作的功.設(shè)一質(zhì)點受如下變力作用在 xoy 平面內(nèi)從點 A 沿光滑曲線弧 L 移動到點 B, ABLxy求移cosABFW “大化小” “常代變”“近似和” “取極限”變力沿直線所作的功解決辦法:動過程中變力所作的
11、功W.ABF ABF),(, ),(),(yxQyxPyxF機動 目錄 上頁 下頁 返回 結(jié)束 1kMkMABxy1) “大化大化小小”.2) “常代變常代變”L把L分成 n 個小弧段,有向小弧段kkMM1),(kkyx近似代替, ),(kk則有kkkkyQxP),(),(kk所做的功為,kWF 沿kkMM1kkkkMMFW1),(k),(kkFnkkWW1則用有向線段 kkMM1kkMM1上任取一點在kykx機動 目錄 上頁 下頁 返回 結(jié)束 3) “近似和近似和”4) “取極限取極限”nkW1kkkkkkyQxP),(),(nkW10limkkkkkky)Q(x)P,(1kMkMABxyL
12、),(kkFkykx(其中 為 n 個小弧段的 最大長度)機動 目錄 上頁 下頁 返回 結(jié)束 2. 定義定義. 設(shè) L 為xoy 平面內(nèi)從 A 到B 的一條有向光滑有向光滑弧弧,若對 L 的任意分割和在局部弧段上任意取點, 都存在,在有向曲線弧 L 上對坐標的曲線積分坐標的曲線積分,LyyxQxyxPd),(d),(kkkxP),(kkkyQ),(nk 10lim則稱此極限為函數(shù)或第二類曲線積分第二類曲線積分. 其中, ),(yxPL 稱為積分弧段積分弧段 或 積分曲線積分曲線 .稱為被積函數(shù)被積函數(shù) , 在L 上定義了一個向量函數(shù)極限),(, ),(),(yxQyxPyxF記作),(yxF)
13、,(yxQ機動 目錄 上頁 下頁 返回 結(jié)束 LxyxPd),(,),(lim10nkkkkxPLyyxQd),(,),(lim10nkkkkyQ若 為空間曲線弧 , 記稱為對 x 的曲線積分;稱為對 y 的曲線積分.若記, 對坐標的曲線積分也可寫作)d,(ddyxs LLyyxQxyxPsFd),(d),(d),(, ),(, ),(),(zyxRzyxQzyxPzyxFzzyxRyzyxQxzyxPsFd),(d),(d),(d)d,d,(ddzyxs 類似地, 機動 目錄 上頁 下頁 返回 結(jié)束 3. 性質(zhì)性質(zhì)(1) 若 L 可分成 k 條有向光滑曲線弧), 1(kiLiLyyxQxyx
14、Pd),(d),(kiLiyyxQxyxP1d),(d),(2) 用L 表示 L 的反向弧 , 則LyyxQxyxPd),(d),(LyyxQxyxPd),(d),(則 定積分是第二類曲線積分的特例.說明說明: : 對坐標的曲線積分必須注意積分弧段的方向方向 !機動 目錄 上頁 下頁 返回 結(jié)束 四、對坐標的曲線積分的計算法四、對坐標的曲線積分的計算法定理定理:),(, ),(yxQyxP設(shè)在有向光滑弧 L 上有定義且L 的參數(shù)方程為)()(tytx,:t則曲線積分LyyxQxyxPd),(d),( )(),(ttP)(t)(ttd)(),(ttQ連續(xù),證明證明: 下面先證LxyxPd),(t
15、ttPd )(),()(t存在, 且有機動 目錄 上頁 下頁 返回 結(jié)束 對應(yīng)參數(shù)設(shè)分點根據(jù)定義ix,it),(ii點,i由于1iiixxx)()(1iittiit)(LxyxPd),(tttPd )(),(niiiP10)(, )(limiit)(niiiP10)(, )(limiit)()(tLxyxPd),(niiiixP10),(lim對應(yīng)參數(shù)連續(xù)所以)(t因為L 為光滑弧 ,同理可證LyyxQd),(tttQd )(),()(t機動 目錄 上頁 下頁 返回 結(jié)束 特別是, 如果 L 的方程為,:),(baxxy則xxxQxxPbad )(,)(,)(xLyyxQxyxPd),(d),
16、(對空間光滑曲線弧 :類似有zzyxRyzyxQxzyxPd),(d),(d),()(t)(t)(t)(, )(),(tttQ)(, )(),(tttRtd )(, )(),(tttP,:)()()(ttztytx定理 目錄 上頁 下頁 返回 結(jié)束 例例1. 計算,dLxyx其中L 為沿拋物線xy 2解法解法1 取 x 為參數(shù), 則OBAOL:01:,:xxyAO10:,:xxyOBOBAOLxyxxyxxyxdddxxxd)(0154d21023xxyyyyxyxLd)(d2112xyxy 解法解法2 取 y 為參數(shù), 則11:,:2yyxL54d2114yy從點xxxd10的一段. ) 1
17、, 1 ()1, 1(BA到)1 , 1(B)1, 1( Aoyx機動 目錄 上頁 下頁 返回 結(jié)束 例例2. 計算其中 L 為,:, 0aaxyyBAoaax(1) 半徑為 a 圓心在原點的 上半圓周, 方向為逆時針方向;(2) 從點 A ( a , 0 )沿 x 軸到點 B ( a , 0 ). 解解: (1) 取L的參數(shù)方程為,d2xyL0:,sin,costtaytaxxyLd2ttadsin2203332a(2) 取 L 的方程為xyLd2ta202sinttad)sin(132334aaaxd00則則機動 目錄 上頁 下頁 返回 結(jié)束 yxo例例3. 計算,dd22yxxyxL其中
18、L為(1) 拋物線 ; 10:,:2xxyL(2) 拋物線 ;10:,:2yyxL(3) 有向折線 .:ABOAL解解: (1) 原式22xxxx d4103(2) 原式y(tǒng)yy222yy d5104(3) 原式y(tǒng)xxyxOAdd22102d)002(xxx1)0, 1(A)1 , 1(B2yx 2xy 10(xxxd)2210(yyd)4yxxyxABdd2210d)102(yy11機動 目錄 上頁 下頁 返回 結(jié)束 例例4. 設(shè)在力場作用下, 質(zhì)點由沿移動到),2,0,(kRB)0, 0,(RA.)2(AB解解: (1)zzyxxydddttkR2022d)(2) 的參數(shù)方程為kttzyRx
19、20:,0,ABzzyxxydddktt20dBAzyx試求力場對質(zhì)點所作的功.;,sin,cos) 1(tkztRytRx)(222Rk 222k其中為),(zxyFsFWdsFWd機動 目錄 上頁 下頁 返回 結(jié)束 ozyx例例5. 求,d)(d)(d)(zyxyzxxyzI其中,2122zyxyx從 z 軸正向看為順時針方向.解解: 取 的參數(shù)方程,sin,costytx)02:(sincos2tttz20Itttcos)sincos22(tttttd )sin)(cossin(costt d)cos41 (220)sin)(cos2(tt 2機動 目錄 上頁 下頁 返回 結(jié)束 五、兩類
20、曲線積分之間的聯(lián)系五、兩類曲線積分之間的聯(lián)系設(shè)有向光滑弧 L 以弧長為參數(shù) 的參數(shù)方程為)0()(, )(lssyysxx已知L切向量的方向余弦為sysxddcos,ddcos則兩類曲線積分有如下聯(lián)系LyyxQxyxPd),(d),(ssysysxQsxsysxPlddd)(),(dd)(),(0ssysxQsysxPldcos)(),(cos)(),(0LsyxQyxPdcos),(cos),(機動 目錄 上頁 下頁 返回 結(jié)束 類似地, 在空間曲線 上的兩類曲線積分的聯(lián)系是zRyQxPdddsRQPdcoscoscos令tAsAtd, ),(RQPA)d,d,(ddzyxs )cos,co
21、s,(cost sA d sA dstAd記 A 在 t 上的投影為機動 目錄 上頁 下頁 返回 結(jié)束 二者夾角為 例例6. 設(shè),max22QPM曲線段 L 的長度為s, 證明),(, ),(yxQyxP續(xù),sMyQxPLdd證證:LyQxPddsQPLdcoscos設(shè)sMsQPLdcoscos說明說明: 上述證法可推廣到三維的第二類曲線積分.在L上連 )cos,(cos, ),(tQPAstALdsALdcos機動 目錄 上頁 下頁 返回 結(jié)束 例例7. .將積分yyxQxyxPLd),(d),(化為對弧長的積分,0222xyx).0 , 2()0 , 0(BO到從解:解:oyxB,22xxyxxxxyd21d2sdxyd12xxxd212sxddcos,22xx syddcosx1yyxQxyxPLd),(d),(syxQyxPLd),(),(22xx)1(x其中L 沿上半圓周機動 目錄 上頁 下頁 返回 結(jié)束 3. 計算,)()(:tyt
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 出口合同范本格式
- Unit 7 Be Wise with Money Period 3 Grammar 教學設(shè)計 2024-2025學年譯林版(2024)七年級英語上冊
- 勞務(wù)發(fā)包合同范本
- 動物投放景區(qū)合同范本
- 農(nóng)村菜田出租合同范本
- 出租養(yǎng)殖雞場合同范本
- 加工定制窗簾合同范本
- 保潔商場合同范本
- 包地收款合同范本
- 勞務(wù)中介代理招聘合同范本
- 無人機固定翼行業(yè)報告
- 小區(qū)門窗拍攝方案
- 初中歷史期中考試分析報告
- 企業(yè)反商業(yè)賄賂法律法規(guī)培訓
- 2023合同香港勞工合同
- 玻璃體腔注射-操作流程和注意事項(特選參考)課件
- 材料化學課件
- 智能傳感器芯片
- -《多軸數(shù)控加工及工藝》(第二版)教案
- 智能交通概論全套教學課件
- 生物醫(yī)學工程倫理 課件全套 第1-10章 生物醫(yī)學工程與倫理-醫(yī)學技術(shù)選擇與應(yīng)用的倫理問題
評論
0/150
提交評論