版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、軸對稱中幾何動點最值問題總結軸對稱的作用是“搬點移線”,可以把圖形中比較分散、缺乏聯(lián)系的元素集中到“新的圖形”中,為應用某些基本定理提供方便。比如我們可以利用軸對稱性質(zhì)求幾何圖形中一些線段和的最大值或最小值問題。利用軸對稱的性質(zhì)解決幾何圖形中的最值問題借助的主要基本定理有三個:(1)兩點之間線段最短;(2)三角形兩邊之和大于第三邊;(3)垂線段最短。初中階段利用軸對稱性質(zhì)求最值的題目可以歸結為:兩點一線,兩點兩線,一點兩線三類線段和的最值問題。下面對三類線段和的最值問題進行分析、討論。( 1) 兩點一線的最值問題 : ( 兩個定點 + 一個動點)問題特征:已知兩個定點位于一條直線的同一側,在直
2、線上求一動點的位置, 使動點與定點 線段和最短。核心思路:這類最值問題所求的 線段和中只有一個動點, 解決這類題目的方法是找出任一定點關于直線的對稱點,連結這個對稱點與另一定點,交直線于一點,交點即為動點滿足最值的位置。方法: 1. 定點過動點所在直線做對稱。2. 連結對稱點與另一個定點,則直線段長度就是我們所求。變異類型:實際考題中,經(jīng)常利用本身就具有對稱性質(zhì)的圖形, 比如等腰三角形,等邊三角形、正方形、圓、二次函數(shù)、直角梯形等圖形,即其中一個定點的對稱點就在這個圖形上。1. 如圖,直線 l 和 l 的同側兩點 A、 B,在直線 l 上求作一點 P,使 PA+PB最小。( 2) 一點兩線的最
3、值問題 : ( 兩個動點 +一個定點)問題特征:已知一個定點位于平面內(nèi)兩相交直線之間,分別在兩直線上確定兩個動點使線段和最短。核心思路:這類問題實際上是兩點兩線段最值問題的變式,通過做這一定點關于兩條線的對稱點,實現(xiàn)“搬點移線” ,把線段“移”到同一直線上來解決。變異類型:1. 如圖,點 P 是 MON內(nèi)的一點,分別在 OM, ON上作點 A, B。使 PAB的周長最小。2. 如圖, 點 A 是 MON外的一點, 在射線 OM上作點 P,使 PA與點 P 到射線 ON的距離之和最小。( 3) 兩點兩線的最值問題 : ( 兩個動點 +兩個定點)問題特征:兩動點,其中一個隨另一個動(一個主動,一個
4、從動),并且兩動點間的距離保持不變。核心思路:用平移方法,可把兩動點變成一個動點,轉化為“兩個定點和一個動點”類型來解。變異類型:1. 如圖,點 P, Q為 MON內(nèi)的兩點,分別在 OM, ON上作點 A,B。使四邊形 PAQB的周長最小。2.如圖,已知A( 1, 3), B( 5, 1),長度為2 的線段PQ 在x 軸上平行移動,當AP+PQ+QB的值最小時,點P 的坐標為()3.( 4) 兩點兩線的最值問題 : ( 兩個動點 +兩個定點)問題特征:兩動點分別在兩條直線上獨立運動,一動點分別到一定點和另一動點的距離和最小。核心思路:利用軸對稱變換, 使一動點在另一動點的對稱點與定點的線段上(
5、兩點之間線段最短),且這條線段垂直于另一動點的對稱點所在直線(連接直線外一點與直線上各點的所有線段中,垂線段最短)時,兩線段和最小,最小值等于這條垂線段的長。變異類型:演變?yōu)槎噙呅沃荛L、折線段等最值問題。1. 如圖,點 A 是 MON內(nèi)的一點,在射線 ON上作點 P,使 PA與點 P 到射線 OM的距離之和最小。二、常見題目Part1 、三角形1如圖,在等邊ABC中, AB=6, AD BC, E 是 AC上的一點, M是 AD上的一點,且AE=2,求 EM+EC的最小值。2如圖,在銳角ABC中, AB=42, BAC 45°, BAC的平分線交BC于點 D, M、N 分別是 AD和
6、 AB上的動點,則 BM+MN的最小值是 _。3如圖, ABC中,AB=2, BAC=30°,若在 AC、AB上各取一點 M、N,使 BM+MN的值最小,則這個最小值。Part2 、正方形1如圖,正方形 ABCD的邊長為 8, M在 DC上,丐 DM 2, N 是 AC上的一動點, DN MN的最小值為 _。 即在直線 AC上求一點 N,使 DN+MN最小 。2如圖所示,正方形ABCD的面積為12, ABE是等邊三角形,點E 在正方形ABCD內(nèi),在對角線 AC上有一點P,使 PD PE的和最小,則這個最小值為()A23B26C3D63在邊長為 2 的正方形 ABCD中,點 Q為 BC
7、邊的中點,點 P為對角線 AC上一動點, 連接PB、 PQ,則 PBQ周長的最小值為 _ (結果不取近似值) 。4如圖,四邊形ABCD是正方形,AB = 10cm , E 為邊 BC的中點, P 為 BD上的一個動點,求 PC+PE的最小值;Part3、矩形1如圖,若四邊形 BD 上的一個動點,求ABCD是矩形,AB = 10cm,BC = 20cm,EPC+PD的最小值;為邊BC 上的一個動點,P 為1如圖, 若四邊形ABCD是菱形,Part4 、菱形AB=10cm,ABC=45°,E為邊BC 上的一個動點,P 為BD 上的一個動點,求PC+PE的最小值;Part5 、直角梯形1已知直角梯形ABCD中,ADBC,ABBC,AD=2,BC=DC=5,點 P 在 BC 上秱動,則當 PA+PD取最小值時, APD 中邊 AP 上的高為()Part6 、一次函數(shù)一次函數(shù)y = kx+ b 的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度排水設施保險合同4篇
- 二零二五版飯店蔬菜肉類產(chǎn)地直供合作合同2篇
- 二零二五年度全新科技項目居間合作費合同模板下載2篇
- 二零二五年度內(nèi)蒙古肉牛產(chǎn)業(yè)鏈人才培養(yǎng)與引進合同
- 2025年度汽車銷售促銷活動執(zhí)行合同模板
- 二零二五年度學校室內(nèi)外體育設施一體化采購合同范本3篇
- 2025年度民間借貸合同監(jiān)督與委托管理服務合同4篇
- 2025年度面粉加工企業(yè)二零二五年度綠色有機面粉采購合同4篇
- 2025年度新能源汽車抵押擔保服務合同
- 二零二五年度公共綠地養(yǎng)護管理合同范本3篇
- 廣東省茂名市電白區(qū)2024-2025學年七年級上學期期末質(zhì)量監(jiān)測生物學試卷(含答案)
- 2024版?zhèn)€人私有房屋購買合同
- 2024爆炸物運輸安全保障協(xié)議版B版
- 2025年度軍人軍事秘密保護保密協(xié)議與信息安全風險評估合同3篇
- 《食品與食品》課件
- 讀書分享會《白夜行》
- 光伏工程施工組織設計
- DB4101-T 121-2024 類家庭社會工作服務規(guī)范
- 化學纖維的鑒別與測試方法考核試卷
- 2024-2025學年全國中學生天文知識競賽考試題庫(含答案)
- 自動駕駛汽車道路交通安全性探討研究論文
評論
0/150
提交評論