高考圓錐曲線經(jīng)典考點_第1頁
高考圓錐曲線經(jīng)典考點_第2頁
高考圓錐曲線經(jīng)典考點_第3頁
高考圓錐曲線經(jīng)典考點_第4頁
高考圓錐曲線經(jīng)典考點_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、解圓錐曲線問題常用方法+經(jīng)典結(jié)論+對偶性質(zhì)總結(jié)解圓錐曲線問題常用以下方法: 1、定義法(1)橢圓有兩種定義。第一定義中,r1+r2=2a。第二定義中,r1=ed1 r2=ed2。 (2)雙曲線有兩種定義。第一定義中,當(dāng)r1>r2時,注意r2的最小值為c-a:第二定義中,r1=ed1,r2=ed2,尤其應(yīng)注意第二定義的應(yīng)用,常常將 半徑與“點到準(zhǔn)線距離”互相轉(zhuǎn)化。 (3)拋物線只有一種定義,而此定義的作用較橢圓、雙曲線更大,很多拋物線問題用定義解決更直接簡明。2、韋達(dá)定理法 因直線的方程是一次的,圓錐曲線的方程是二次的,故直線與圓錐曲線的問題常轉(zhuǎn)化為方程組關(guān)系問題,最終轉(zhuǎn)化為一元二次方程問

2、題,故用韋達(dá)定理及判別式是解決圓錐曲線問題的重點方法之一,尤其是弦中點問題,弦長問題,可用韋達(dá)定理直接解決,但應(yīng)注意不要忽視判別式的作用。 3、解析幾何的運(yùn)算中,常設(shè)一些量而并不解解出這些量,利用這些量過渡使問題得以解決,這種方法稱為“設(shè)而不求法”。設(shè)而不求法對于直線與圓錐曲線相交而產(chǎn)生的弦中點問題,常用“點差法”,即設(shè)弦的兩個端點A(x1,y1),B(x2,y2),弦AB中點為M(x0,y0),將點A、B坐標(biāo)代入圓錐曲線方程,作差后,產(chǎn)生弦中點與弦斜率的關(guān)系,這是一種常見的“設(shè)而不求”法,具體有: (1)與直線相交于A、B,設(shè)弦AB中點為M(x0,y0),則有。 (2)與直線l相交于A、B,

3、設(shè)弦AB中點為M(x0,y0)則有(3)y2=2px(p>0)與直線l相交于A、B設(shè)弦AB中點為M(x0,y0),則有2y0k=2p,即y0k=p.【典型例題】例1、(1)拋物線C:y2=4x上一點P到點A(3,4)與到準(zhǔn)線的距離和最小,則點 P的坐標(biāo)為_ (2)拋物線C: y2=4x上一點Q到點B(4,1)與到焦點F的距離和最小,則點Q的坐標(biāo)為。分析:(1)A在拋物線外,如圖,連PF,則,因而易發(fā)現(xiàn),當(dāng)A、P、F三點共線時,距離和最小。(2)B在拋物線內(nèi),如圖,作QRl交于R,則當(dāng)B、Q、R三點共線時,距離和最小。解:(1)(2,)連PF,當(dāng)A、P、F三點共線時,最小,此時AF的方程為

4、 即 y=2(x-1),代入y2=4x得P(2,2),(注:另一交點為(),它為直線AF與拋物線的另一交點,舍去)(2)()過Q作QRl交于R,當(dāng)B、Q、R三點共線時,最小,此時Q點的縱坐標(biāo)為1,代入y2=4x得x=,Q()點評:這是利用定義將“點點距離”與“點線距離”互相轉(zhuǎn)化的一個典型例題,請仔細(xì)體會。例2、F是橢圓的右焦點,A(1,1)為橢圓內(nèi)一定點,P為橢圓上一動點。(1)的最小值為(2)的最小值為分析:PF為橢圓的一個焦半徑,常需將另一焦半徑或準(zhǔn)線作出來考慮問題。解:(1)4-設(shè)另一焦點為,則(-1,0)連A,P當(dāng)P是A的延長線與橢圓的交點時,取得最小值為4-。(2)3 作出右準(zhǔn)線l,

5、作PHl交于H,因a2=4,b2=3,c2=1, a=2,c=1,e=,當(dāng)A、P、H三點共線時,其和最小,最小值為例3、動圓M與圓C1:(x+1)2+y2=36內(nèi)切,與圓C2:(x-1)2+y2=4外切,求圓心M的軌跡方程。分析:作圖時,要注意相切時的“圖形特征”:兩個圓心與切點這三點共線(如圖中的A、M、C共線,B、D、M共線)。列式的主要途徑是動圓的“半徑等于半徑”(如圖中的)。解:如圖, (*)點M的軌跡為橢圓,2a=8,a=4,c=1,b2=15軌跡方程為點評:得到方程(*)后,應(yīng)直接利用橢圓的定義寫出方程,而無需再用距離公式列式求解,即列出,再移項,平方,相當(dāng)于將橢圓標(biāo)準(zhǔn)方程推導(dǎo)了一

6、遍,較繁瑣!例4、ABC中,B(-5,0),C(5,0),且sinC-sinB=sinA,求點A的軌跡方程。分析:由于sinA、sinB、sinC的關(guān)系為一次齊次式,兩邊乘以2R(R為外接圓半徑),可轉(zhuǎn)化為邊長的關(guān)系。解:sinC-sinB=sinA 2RsinC-2RsinB=·2RsinA即 (*)點A的軌跡為雙曲線的右支(去掉頂點)2a=6,2c=10a=3, c=5, b=4所求軌跡方程為 (x>3)點評:要注意利用定義直接解題,這里由(*)式直接用定義說明了軌跡(雙曲線右支)例5、定長為3的線段AB的兩個端點在y=x2上移動,AB中點為M,求點M到x軸的最短距離。分析

7、:(1)可直接利用拋物線設(shè)點,如設(shè)A(x1,x12),B(x2,X22),又設(shè)AB中點為M(x0y0)用弦長公式及中點公式得出y0關(guān)于x0的函數(shù)表達(dá)式,再用函數(shù)思想求出最短距離。(2)M到x軸的距離是一種“點線距離”,可先考慮M到準(zhǔn)線的距離,想到用定義法。解法一:設(shè)A(x1,x12),B(x2,x22),AB中點M(x0,y0)則由得(x1-x2)21+(x1+x2)2=9即(x1+x2)2-4x1x2·1+(x1+x2)2=9 由、得2x1x2=(2x0)2-2y0=4x02-2y0代入得 (2x0)2-(8x02-4y0)·1+(2x0)2=9,當(dāng)4x02+1=3 即

8、時,此時法二:如圖, 即, 當(dāng)AB經(jīng)過焦點F時取得最小值。M到x軸的最短距離為點評:解法一是列出方程組,利用整體消元思想消x1,x2,從而形成y0關(guān)于x0的函數(shù),這是一種“設(shè)而不求”的方法。而解法二充分利用了拋物線的定義,巧妙地將中點M到x軸的距離轉(zhuǎn)化為它到準(zhǔn)線的距離,再利用梯形的中位線,轉(zhuǎn)化為A、B到準(zhǔn)線的距離和,結(jié)合定義與三角形中兩邊之和大于第三邊(當(dāng)三角形“壓扁”時,兩邊之和等于第三邊)的屬性,簡捷地求解出結(jié)果的,但此解法中有缺點,即沒有驗證AB是否能經(jīng)過焦點F,而且點M的坐標(biāo)也不能直接得出。例6、已知橢圓過其左焦點且斜率為1的直線與橢圓及準(zhǔn)線從左到右依次變于A、B、C、D、設(shè)f(m)=

9、,(1)求f(m),(2)求f(m)的最值。分析:此題初看很復(fù)雜,對f(m)的結(jié)構(gòu)不知如何運(yùn)算,因A、B來源于“不同系統(tǒng)”,A在準(zhǔn)線上,B在橢圓上,同樣C在橢圓上,D在準(zhǔn)線上,可見直接求解較繁,將這些線段“投影”到x軸上,立即可得防此時問題已明朗化,只需用韋達(dá)定理即可。解:(1)橢圓中,a2=m,b2=m-1,c2=1,左焦點F1(-1,0)則BC:y=x+1,代入橢圓方程即(m-1)x2+my2-m(m-1)=0得(m-1)x2+m(x+1)2-m2+m=0(2m-1)x2+2mx+2m-m2=0設(shè)B(x1,y1),C(x2,y2),則x1+x2=-(2)當(dāng)m=5時, 當(dāng)m=2時,點評:此題

10、因最終需求,而BC斜率已知為1,故可也用“點差法”設(shè)BC中點為M(x0,y0),通過將B、C坐標(biāo)代入作差,得,將y0=x0+1,k=1代入得,可見當(dāng)然,解本題的關(guān)鍵在于對的認(rèn)識,通過線段在x軸的“投影”發(fā)現(xiàn)是解此題的要點。【同步練習(xí)】1、已知:F1,F(xiàn)2是雙曲線的左、右焦點,過F1作直線交雙曲線左支于點A、B,若,ABF2的周長為( )A、4a B、4a+m C、4a+2m D、4a-m 2、若點P到點F(4,0)的距離比它到直線x+5=0的距離小1,則P點的軌跡方程是 ( )A、y2=-16x B、y2=-32x C、y2=16x D、y2=32x3、已知ABC的三邊AB、BC、AC的長依次

11、成等差數(shù)列,且,點B、C的坐標(biāo)分別為(-1,0),(1,0),則頂點A的軌跡方程是( )A、 B、C、 D、4、過原點的橢圓的一個焦點為F(1,0),其長軸長為4,則橢圓中心的軌跡方程是 ( )A、 B、C、 D、5、已知雙曲線上一點M的橫坐標(biāo)為4,則點M到左焦點的距離是6、拋物線y=2x2截一組斜率為2的平行直線,所得弦中點的軌跡方程是7、已知拋物線y2=2x的弦AB所在直線過定點p(-2,0),則弦AB中點的軌跡方程是8、過雙曲線x2-y2=4的焦點且平行于虛軸的弦長為9、直線y=kx+1與雙曲線x2-y2=1的交點個數(shù)只有一個,則k=10、設(shè)點P是橢圓上的動點,F(xiàn)1,F(xiàn)2是橢圓的兩個焦點

12、,求sinF1PF2的最大值。11、已知橢圓的中心在原點,焦點在x軸上,左焦點到坐標(biāo)原點、右焦點、右準(zhǔn)線的距離依次成等差數(shù)列,若直線l與此橢圓相交于A、B兩點,且AB中點M為(-2,1),求直線l的方程和橢圓方程。12、已知直線l和雙曲線及其漸近線的交點從左到右依次為A、B、C、D。求證:?!緟⒖即鸢浮?1、C,選C2、C點P到F與到x+4=0等距離,P點軌跡為拋物線 p=8開口向右,則方程為y2=16x,選C3、D,且點A的軌跡為橢圓在y軸右方的部分、又A、B、C三點不共線,即y0,故選D。4、A設(shè)中心為(x,y),則另一焦點為(2x-1,2y),則原點到兩焦點距離和為4得,又c<a,

13、(x-1)2+y2<4 ,由,得x-1,選A5、左準(zhǔn)線為x=-,M到左準(zhǔn)線距離為 則M到左焦點的距離為6、設(shè)弦為AB,A(x1,y1),B(x2,y2)AB中點為(x,y),則y1=2x12,y2=2x22,y1-y2=2(x12-x22)2=2·2x,將代入y=2x2得,軌跡方程是(y>)7、y2=x+2(x>2)設(shè)A(x1,y1),B(x2,y2),AB中點M(x,y),則,即y2=x+2又弦中點在已知拋物線內(nèi)P,即y2<2x,即x+2<2x,x>28、4,令代入方程得8-y2=4y2=4,y=±2,弦長為49、y=kx+1代入x2-

14、y2=1得x2-(kx+1)2-1=0(1-k2)x2-2kx-2=0得4k2+8(1-k2)=0,k=1-k2=0得k=±110、解:a2=25,b2=9,c2=16設(shè)F1、F2為左、右焦點,則F1(-4,0)F2(4,0)設(shè)則2-得2r1r2(1+cos)=4b21+cos=r1+r2, r1r2的最大值為a21+cos的最小值為,即1+coscos, 則當(dāng)時,sin取值得最大值1,即sinF1PF2的最大值為1。11、設(shè)橢圓方程為由題意:C、2C、成等差數(shù)列,a2=2(a2-b22DDFFF2+2222222大案要案 000),a2=2b2橢圓方程為,設(shè)A(x1,y1),B(x

15、2,y2)則-得2222222即k=1直線AB方程為y-1=x+2即y=x+3, 代入橢圓方程即x2+2y2-2b2=0得x2+2(x+3)2-2b2=03x2+12x+18-2b2=0, 解得b2=12, 橢圓方程為,直線l方程為x-y+3=012、證明:設(shè)A(x1,y1),D(x2,y2),AD中點為M(x0,y0)直線l的斜率為k,則-得設(shè),則-得由、知M、均在直線上,而M、又在直線l上 ,若l過原點,則B、C重合于原點,命題成立若l與x軸垂直,則由對稱性知命題成立若l不過原點且與x軸不垂直,則M與重合橢圓與雙曲線的對偶性質(zhì)總結(jié)橢 圓1. 點P處的切線PT平分PF1F2在點P處的外角.2

16、. PT平分PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3. 以焦點弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相離.4. 以焦點半徑PF1為直徑的圓必與以長軸為直徑的圓內(nèi)切.5. 若在橢圓上,則過的橢圓的切線方程是.6. 若在橢圓外 ,則過Po作橢圓的兩條切線切點為P1、P2,則切點弦P1P2的直線方程是.7. 橢圓 (ab0)的左右焦點分別為F1,F(xiàn) 2,點P為橢圓上任意一點,則橢圓的焦點角形的面積為.8. 橢圓(ab0)的焦半徑公式:,(,).9. 設(shè)過橢圓焦點F作直線與橢圓相交 P、Q兩點,A為橢圓長軸上一個頂點,連結(jié)AP 和AQ分別交相應(yīng)于焦點

17、F的橢圓準(zhǔn)線于M、N兩點,則MFNF.10. 過橢圓一個焦點F的直線與橢圓交于兩點P、Q, A1、A2為橢圓長軸上的頂點,A1P和A2Q交于點M,A2P和A1Q交于點N,則MFNF.11. AB是橢圓的不平行于對稱軸的弦,M為AB的中點,則,即。12. 若在橢圓內(nèi),則被Po所平分的中點弦的方程是.13. 若在橢圓內(nèi),則過Po的弦中點的軌跡方程是.雙曲線1. 點P處的切線PT平分PF1F2在點P處的內(nèi)角.2. PT平分PF1F2在點P處的內(nèi)角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3. 以焦點弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相交.4. 以焦點半徑PF1為直徑的圓必

18、與以實軸為直徑的圓相切.(內(nèi)切:P在右支;外切:P在左支)5. 若在雙曲線(a0,b0)上,則過的雙曲線的切線方程是.6. 若在雙曲線(a0,b0)外 ,則過Po作雙曲線的兩條切線切點為P1、P2,則切點弦P1P2的直線方程是.7. 雙曲線(a0,bo)的左右焦點分別為F1,F(xiàn) 2,點P為雙曲線上任意一點,則雙曲線的焦點角形的面積為.8. 雙曲線(a0,bo)的焦半徑公式:(,當(dāng)在右支上時,,.當(dāng)在左支上時,,9. 設(shè)過雙曲線焦點F作直線與雙曲線相交 P、Q兩點,A為雙曲線長軸上一個頂點,連結(jié)AP 和AQ分別交相應(yīng)于焦點F的雙曲線準(zhǔn)線于M、N兩點,則MFNF.10. 過雙曲線一個焦點F的直線與

19、雙曲線交于兩點P、Q, A1、A2為雙曲線實軸上的頂點,A1P和A2Q交于點M,A2P和A1Q交于點N,則MFNF.11. AB是雙曲線(a0,b0)的不平行于對稱軸的弦,M為AB的中點,則,即。12. 若在雙曲線(a0,b0)內(nèi),則被Po所平分的中點弦的方程是.13. 若在雙曲線(a0,b0)內(nèi),則過Po的弦中點的軌跡方程是.橢圓與雙曲線的經(jīng)典結(jié)論橢 圓1. 橢圓(abo)的兩個頂點為,,與y軸平行的直線交橢圓于P1、P2時A1P1與A2P2交點的軌跡方程是.2. 過橢圓 (a0, b0)上任一點任意作兩條傾斜角互補(bǔ)的直線交橢圓于B,C兩點,則直線BC有定向且(常數(shù)).3. 若P為橢圓(ab

20、0)上異于長軸端點的任一點,F1, F 2是焦點, , ,則.4. 設(shè)橢圓(ab0)的兩個焦點為F1、F2,P(異于長軸端點)為橢圓上任意一點,在PF1F2中,記, ,,則有.5. 若橢圓(ab0)的左、右焦點分別為F1、F2,左準(zhǔn)線為L,則當(dāng)0e時,可在橢圓上求一點P,使得PF1是P到對應(yīng)準(zhǔn)線距離d與PF2的比例中項.6. P為橢圓(ab0)上任一點,F1,F2為二焦點,A為橢圓內(nèi)一定點,則,當(dāng)且僅當(dāng)三點共線時,等號成立.7. 橢圓與直線有公共點的充要條件是.8. 已知橢圓(ab0),O為坐標(biāo)原點,P、Q為橢圓上兩動點,且.(1);(2)|OP|2+|OQ|2的最大值為;(3)的最小值是.9

21、. 過橢圓(ab0)的右焦點F作直線交該橢圓右支于M,N兩點,弦MN的垂直平分線交x軸于P,則.10. 已知橢圓( ab0),A、B、是橢圓上的兩點,線段AB的垂直平分線與x軸相交于點,則.11. 設(shè)P點是橢圓( ab0)上異于長軸端點的任一點,F1、F2為其焦點記,則(1).(2).12. 設(shè)A、B是橢圓( ab0)的長軸兩端點,P是橢圓上的一點,, ,,c、e分別是橢圓的半焦距離心率,則有(1).(2).(3).13. 已知橢圓( ab0)的右準(zhǔn)線與x軸相交于點,過橢圓右焦點的直線與橢圓相交于A、B兩點,點在右準(zhǔn)線上,且軸,則直線AC經(jīng)過線段EF 的中點.14. 過橢圓焦半徑的端點作橢圓的

22、切線,與以長軸為直徑的圓相交,則相應(yīng)交點與相應(yīng)焦點的連線必與切線垂直.15. 過橢圓焦半徑的端點作橢圓的切線交相應(yīng)準(zhǔn)線于一點,則該點與焦點的連線必與焦半徑互相垂直.16. 橢圓焦三角形中,內(nèi)點到一焦點的距離與以該焦點為端點的焦半徑之比為常數(shù)e(離心率). (注:在橢圓焦三角形中,非焦頂點的內(nèi)、外角平分線與長軸交點分別稱為內(nèi)、外點.)17. 橢圓焦三角形中,內(nèi)心將內(nèi)點與非焦頂點連線段分成定比e.18. 橢圓焦三角形中,半焦距必為內(nèi)、外點到橢圓中心的比例中項.雙曲線1. 雙曲線(a0,b0)的兩個頂點為,,與y軸平行的直線交雙曲線于P1、P2時A1P1與A2P2交點的軌跡方程是.2. 過雙曲線(a0,bo)上任一點任意作兩條傾斜角互補(bǔ)的直線交雙曲線于B,C兩點,則直線BC有定向且(常數(shù)).3. 若P為雙曲線(a0,b0)右(或左)支上除頂點外的任一點,F1, F 2是焦點, , ,則(或).4. 設(shè)雙曲線(a0,b0)的兩個焦點為F1、F2,P(異于長軸端點)為雙曲線上任意一點,在PF1F2中,記, ,,則有.5. 若雙曲線(a0,b0)的左、右焦點分別為F1、F2,左準(zhǔn)線為L,則當(dāng)1e時,可在雙

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論