![利用MATLAB中g(shù)atool快速實(shí)現(xiàn)訓(xùn)練神經(jīng)網(wǎng)絡(luò)的遺傳算法程序_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/8/ed69fb64-67cd-4e76-92ee-53a504dc5fb3/ed69fb64-67cd-4e76-92ee-53a504dc5fb31.gif)
![利用MATLAB中g(shù)atool快速實(shí)現(xiàn)訓(xùn)練神經(jīng)網(wǎng)絡(luò)的遺傳算法程序_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/8/ed69fb64-67cd-4e76-92ee-53a504dc5fb3/ed69fb64-67cd-4e76-92ee-53a504dc5fb32.gif)
![利用MATLAB中g(shù)atool快速實(shí)現(xiàn)訓(xùn)練神經(jīng)網(wǎng)絡(luò)的遺傳算法程序_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/8/ed69fb64-67cd-4e76-92ee-53a504dc5fb3/ed69fb64-67cd-4e76-92ee-53a504dc5fb33.gif)
![利用MATLAB中g(shù)atool快速實(shí)現(xiàn)訓(xùn)練神經(jīng)網(wǎng)絡(luò)的遺傳算法程序_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/8/ed69fb64-67cd-4e76-92ee-53a504dc5fb3/ed69fb64-67cd-4e76-92ee-53a504dc5fb34.gif)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、利用MATLAB中g(shù)atool快速實(shí)現(xiàn)訓(xùn)練神經(jīng)網(wǎng)絡(luò)的遺傳算法程序Deng Da-PengEmail: rexdengGenetic Algorithm,as an famous intelligent algorithm based on evolutionary thoughts, has been widely used to weights training and parameters optimization of neural networks. Essentially, GA is a global stochastic searching algorithm, which ap
2、proximating global minima through Selection、Crossover and Mutation operators. It is difficult for many researchers to utilize advanced programming languages to implement GA. Actually, MATLAB provide us a very good graphic user interface of GA, named gatool, in GADS toolbox.Below contents illustrate
3、how to use this GUI tool to implement combination of GA and NN. In this case, I construct a feed forward network, which topological structure is 5-3-1, transfer functions are tansig and purelin for hidden and output layer, respectively. The key step is write a function to calculate fitness of chromo
4、somes in GA population. Below code is implement this fitness calculating function in this case.function netout = netcal(pm) iN=5; hN=3;oN=1; % add your training sets here P= ; T= ; % Pre-processing data sets Pn,minP,maxP,Tn,minT,maxT = premnmx(P,T); net=newff(minmax(Pn),hN,oN,'tansig','p
5、urelin'); x,y=size(pm); for j=1:hN x2iw(j,:)=pm(1,(j-1)*iN+1):j*iN); end for k=1:oN x2lw(k,:)=pm(1,(iN*hN+1):(iN*hN+hN); end x2b=pm(1,(iN+1)*hN+1):y); x2b1=x2b(1:hN).' x2b2=x2b(hN+1:hN+oN).' net.IW1,1=x2iw; net.LW2,1=x2lw; net.b1=x2b1; net.b2=x2b2; netout=mse(sim(net,Pn)-Tn); % this erro
6、r function provides fitness for chromosomeOK, save this function with a name, i.e., netcal.m. Then, let's start gatool in MATLAB command line. The GUI of gatool is below.click then launchparameters settingclick and see helpenter num of weightsenter fitness functionFill name of fitness calculatin
7、g function in fitness function textbox, but note that add '' before function name. Calculate numbers of weights of network, in this case is 22. Then, you need set parameters of GA in right. This step need you understand GA. If any question, you can see help.Complete all these steps, click st
8、art button and launch training. When training process is end ,you will see a best chromosome in lower corner of left. This final result is best weight array of NN trained by GA. Change it to weight matrix and transfer to network according to fitness function code, then simulation with working sets a
9、nd observe network performance.You can generate a m files through "generate M-file" in "file" menu. In this case, the M-file code is showed below. You may add some code in the end of this function for convenience.OK, it is end. Thanks for your reading and hope for your reviews an
10、d comments.best chromosomefunction X,FVAL,REASON,OUTPUT,POPULATION,SCORES = untitled% This is an auto generated M file to do optimization with the Genetic Algorithm and% Direct Search Toolbox. Use GAOPTIMSET for default GA options structure. %Fitness functionfitnessFunction = netcal;%Number of Varia
11、blesnvars = 22; /CEE/professional_development_programs/ %Start with default optionsoptions = gaoptimset;%Modify some parametersoptions = gaoptimset(options,'PopInitRange' ,-0.5 ; 0.5 );options = gaoptimset(options,'StallGenLimit' ,100);options = gaoptimset(options,'CrossoverFcn' , crossoverheuristic 1.2 );options = gaoptimset(options,'MutationFcn' , mutationgaussian 1 1 );options = gaoptimset(options,'Display' ,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 虛擬演播室制作設(shè)備項(xiàng)目籌資方案
- 文山2024年云南文山市緊密型醫(yī)療衛(wèi)生共同體總醫(yī)院招聘54人筆試歷年參考題庫附帶答案詳解
- 2025年中國減脂儀市場調(diào)查研究報告
- 2025至2031年中國高效低噪音節(jié)能離心通風(fēng)機(jī)行業(yè)投資前景及策略咨詢研究報告
- 2025年紅瑪瑙情侶吊墜項(xiàng)目可行性研究報告
- 2025至2031年中國短袖迷彩服行業(yè)投資前景及策略咨詢研究報告
- 2025年洗衣車項(xiàng)目可行性研究報告
- 2025年有色打字機(jī)項(xiàng)目可行性研究報告
- 2025至2031年中國小麥胚芽油軟膠囊行業(yè)投資前景及策略咨詢研究報告
- 2025年實(shí)木復(fù)合拼花門項(xiàng)目可行性研究報告
- 化學(xué)選修4《化學(xué)反應(yīng)原理》(人教版)全部完整PP課件
- 《煤礦安全規(guī)程》專家解讀(詳細(xì)版)
- 招聘面試流程sop
- 建筑公司工程財(cái)務(wù)報銷制度(精選7篇)
- 工程設(shè)計(jì)方案定案表
- 最新2022年減肥食品市場現(xiàn)狀與發(fā)展趨勢預(yù)測
- 第一章-天氣圖基本分析方法課件
- 暖氣管道安裝施工計(jì)劃
- 體育實(shí)習(xí)周記20篇
- 初二物理彈力知識要點(diǎn)及練習(xí)
- 復(fù)合材料成型工藝及特點(diǎn)
評論
0/150
提交評論