


下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、第二十一講 容斥原理(包含與排除)【知識梳理】容斥原理(包含與排除原理):(用|A|表示集合A中元素的個數(shù),如A=1, 2, 3,則|A|=3)原理一(二量重疊):給定兩個集合 A和B,要計算AU B中元素的個數(shù), 可以分成兩步進行:第一步:先求出I Al + I B I (或者說把A, B的一切元素都“包含”進來, 加在一起);第二步:減去I AH Bl (即“排除”加了兩次的元素)總結為公式:|A U B|= I A I + I B I - I AH B I原理二(三量重疊):給定三個集合 A, B, C。要計算AU BU C中元素的個 數(shù),可以分三步進行:第一步:先求 I A I + I
2、 B I + I C I ; 第二步:減去 I AH B I , I BA C I ,I cn ai ;第三步:再加上I An Bn ci 0即有以下公式:I AU BU C I = I A I + I B I + I C I - I AH B I - I BA C I - |Cn A|+|A nBn c【典例精講U實驗小學三年級一班統(tǒng)計考試成績,數(shù)學得 90分上的有35人; 語文得90分以上的有31人;兩科中至少有一科在90分以上的有38人。問兩科 都在90分以上的有多少人?思路分析:設A=數(shù)學成績90分以上的學生, B=語文成績90分以上的學生, 那么,集合AU B表示兩科中至少有一科在9
3、0分以上的學生,由題意知,I AI 二35, I BI =31, I AU B I =38,現(xiàn)要求兩科均在90分以上的學生人數(shù),即求I A ABI,由容斥原理即可解決。解答:設A二數(shù)學成績90分以上的學生 , B=語文成績90分以上的學生,I An B I = I A I + I B I - I AU B I =35+31-38=28答:兩科都在90分以上的有28人.小結:解決這類問題關鍵要弄清楚重疊部分是多少。【舉一反三】1.六一班有學生46人,其中會騎自行車的17人,會游泳的14人, 既會騎車又會游泳的4人,問兩樣都不會的有多少人?2.兩張長4厘米,寬2厘米的長方形紙擺放成如圖所示形狀,把
4、它放在桌面上,覆蓋面積有多少平方厘米?,3.在1至1000的自然數(shù)中,不能被5或7整除的數(shù)有多少個?【典例精講2】希望小學六年級的課外小組分為音樂、下象棋、書法三個小組,參加音樂小組的有23人,參加下象棋小組的有27人,參加書法小組的有18人; 同時參加音樂、下象棋兩個小組的有 4人,同時參加音樂、書法小組的有 7人, 同時參加下象棋、書法小組的有5人;三個小組都參加的有2人。問:這個年級 參加課外小組共有多少人?思路分析:用原理二(三量重疊)解決。解答:設A=音樂小組的同學 , B=下象棋小組的同學 , C=書法小組的同學, An b=音樂、下象棋小組的同學, An c=參加音樂、書法小組的
5、同學, Bn c=參 加下象棋、書法小組的同學, An BA c=三個小組都參加的同學由題意知:I A I =23, I Bl =27, I Cl =18I An bi =4, I An ci =7, I Bn ci =5, I An Bn ci =2根據(jù)容斥原理二得:I AU BU C I = I A I + I B I + I C I - I An B I - I AH C|- I BA C|+|A ABA C I =23+27+18- (4+5+7) +2=54 (人)小結:解決這類問題要清楚哪些是兩類都做的,哪些是三類都做的?!九e一反三】4.某個班的全體學生進行短跑、游泳、籃球三個項目
6、的測試,有4名學生在這三個項目上都沒有達到優(yōu)秀,其余每人至少有一個項目達到了優(yōu)秀。這部分學生達到優(yōu)秀的項目、人數(shù)如下表:求這個班的學生人數(shù)。5.在11000這1000個自然數(shù)中,不能被2、3、5中任何一個數(shù)整除的數(shù)有多 少個?答案及解析:1 .【解析】利用容斥原理求出至少會一種的人數(shù),再用總人數(shù)減去這些人數(shù)就可 以了。【答案】:所求人數(shù)=全班人數(shù)-(會騎車人數(shù)位游泳人數(shù)-既會騎車又會游泳人 數(shù))=46-(17+14-4)=19(人)答:兩樣都不會的有19人。2 .【解析】:兩個長方形如圖擺放時出現(xiàn)了重疊,重疊部分恰好是邊長為2厘米 的正方形,如果利用兩個4X2的長方形面積之和來計算被覆蓋桌面的
7、面積,那 么重疊部分在兩個長方形面積中各被計算了一次,而實際上這部分只需計算一次 就可以了,所以,被覆蓋面積=長方形面積之和-重疊部分?!敬鸢浮浚? X2X22X2=12 (平方米)答:覆蓋面積有12平方厘米。3 .【解析】利用容斥原理計算出至少能被5或7整除的數(shù)的個數(shù),再用總個數(shù)相 減即可。【答案】:能被5整除的數(shù)共有1000+5=200 (個);能被7整除的數(shù)共有1000+ 7=142 (個)6 (個);同時能被5和7整除的數(shù)共有1000+ 35=28 (個)20 (個)。所以,能被5或7整除的數(shù)一共有(即重復了的共有):200+ 14228=314(個); 不能被5或7整除的數(shù)一共有10
8、00 314=686 (個)。4 .【解析】要把一項優(yōu)秀的、兩項或者三項優(yōu)秀計算出來,最后再把都沒有獲得 優(yōu)秀的加起來就可以了。【答案】:只有籃球一項達到優(yōu)秀的有1565+2=6 (人);只有游泳一項達到優(yōu)秀的有1866+2=8 (人);只有短跑一項達到優(yōu)秀的有17-6-5+2=8 (人)。獲得兩項或者三項優(yōu)秀的有 6+6+5-2X2=13 (人)。另有4人一項都沒獲優(yōu)秀。所以,這個班學生人數(shù)是13+6+8+8 + 4=39 (人)。5 .【解析】:根據(jù)容斥原理分類解決即可。【答案】:被2整除,即 兩個兩個地數(shù)有多少組,10002=500(表示除后取整數(shù)部分)被3整除的有333個,被5整除的有200個,被2和3同時整除的有166個
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度人美容院與時尚博主互動直播合作協(xié)議
- 2025年度教育貸款借款合同
- 2025年度居住權租賃合同解除與糾紛調解協(xié)議
- 2025年度合伙份額轉讓與體育產業(yè)投資合作協(xié)議
- 2025年度游戲賬號社區(qū)建設與活動策劃合同
- 2025年度個性化教育資料打印服務合同
- 2025年新能源汽車行業(yè)分析:新能源汽車市場需求持續(xù)釋放
- 2025年包裝設備行業(yè)政策分析:包裝設備行業(yè)標準確保設備安全
- 2025年哈爾濱城市職業(yè)學院單招職業(yè)技能測試題庫完美版
- 2025貴州省安全員C證考試題庫
- 信息論與編碼 自學報告
- 中班:語言擠啊擠
- 二年級乘除法口訣專項練習1000題-推薦
- 貸款項目資金平衡表
- 唯美動畫生日快樂電子相冊視頻動態(tài)PPT模板
- 設計文件簽收表(一)
- 義務教育語文課程標準2022年版
- 公務員入職登記表
- 臨水臨電計算公式案例
- 2022新教科版六年級科學下冊第二單元《生物的多樣性》全部教案(共7節(jié))
- PEP人教版小學英語單詞四年級上冊卡片(可直接打印)
評論
0/150
提交評論