2017年人教版七年級數(shù)學(xué)下冊知識點總結(jié)_第1頁
2017年人教版七年級數(shù)學(xué)下冊知識點總結(jié)_第2頁
2017年人教版七年級數(shù)學(xué)下冊知識點總結(jié)_第3頁
2017年人教版七年級數(shù)學(xué)下冊知識點總結(jié)_第4頁
2017年人教版七年級數(shù)學(xué)下冊知識點總結(jié)_第5頁
已閱讀5頁,還剩5頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、2017年人教版七年級數(shù)學(xué)下冊 知識點總結(jié)2014年最新版人教版七年級數(shù)學(xué)下冊知識點第五章相交線與平行線相交線相交線垂線同位角、內(nèi)錯角、同旁內(nèi)角平行線:在同一半聞內(nèi)定義:_,不相交的兩條直線叫 平行線平行線及苴判定判定1,平行線的判定判定2相交線與平行線判定3判定4:同位角相等,兩直線平行:內(nèi)錯角相等,兩直線平行:同旁內(nèi)角互補,兩直線平行:平行于同一條直線 的兩直線平行性質(zhì)1:兩直線平行,同位角 相等性質(zhì)2:兩直線平行,內(nèi)錯角 相等平行線的性質(zhì) 性質(zhì)3:兩直線平行,同旁內(nèi) 角互補 性質(zhì)4:平行于同一條直線 的兩直線平行 命題、定理平移一、知識網(wǎng)絡(luò)結(jié)構(gòu)、知識要點1、在同一平面內(nèi),兩條直線的位置關(guān)

2、系有兩 種:相交和平行,垂直是相交的一種特殊情況。2、在同一平面內(nèi),不相交的兩條直線叫平行線。如果兩條直線只有 一個 公共點.稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。21X3、兩條直線相交所構(gòu)成的四個角中,有 公共頂點 且有 一條公共邊 的嗎少逾、 鄰補角。鄰補角的性質(zhì): 鄰補角互補。如圖1所示./1與/2互為鄰補角./2與/3_互為鄰補角,/ 3與 / 4互為鄰補角,/ 4與/1互為鄰補角。/ 1 + /2= 180 ° ;乙2+ / 3= 180 ° ; / 3+/4 = 180 ° ; / 4+/ 1 = 180 ° 。4、兩條

3、直線相交所構(gòu)成的四個角中, 一個角的兩邊分別是另一個角的兩邊的 反向延長 量,這樣的兩個角互為 對頂角。對頂角的性質(zhì):對頂角相等。如圖 1所示,/ 1與圖2/ 3互為對頂角,/ 1與/ 3互為對頂角。/ 1=73; 2 2=7 45、兩條直線相交所成的角中,如果有一個是 直角或90°時,稱這兩條直線互相垂直, 其中一條叫做另一條的垂線。 如圖2所示,當(dāng)/ 1或/2或/3或/ 4 = 90°時,a_,_b 垂線的性質(zhì): 性質(zhì)1:過一點有且只有一條直線與已知直線垂直。性質(zhì)2:連接直線外一點與直線上各點的所有線段中,垂線段最短。性質(zhì)3:如圖2所示,當(dāng)且,b 時,/ 1= Z2 =

4、 / 3= / 4 = 90 °點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。6、同位角、內(nèi)錯角、同旁內(nèi)角基本特征:在兩條直線(被截線)的同一方,都在第三條直線的兩個角叫 同位角。圖3中,共有 生對同位角:Z(截線)的同一側(cè)a1與/ 5是同位角;圖3/2與乙互是同位角;/ 3與/7是同位角;/ 4與/ 8是同位角。在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側(cè),這樣的兩個角叫內(nèi) 錯角。圖3中,共有2_對內(nèi)錯角:/ 1與/ 7是內(nèi)錯角;/ 4與/ 6是內(nèi)錯角。在兩條直線(被截線)的 之間,都在第三條直線(截線)的 同一旁,這樣的兩個角叫 同旁內(nèi)角。圖3中

5、,共有2對同旁內(nèi)角:/ 1與/ 6是同旁內(nèi)角;/ 4與/ 7是同旁內(nèi) 角。7、平行公理:經(jīng)過直線外一點有且只有一條直線與已知直線平行。平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。10平行線的性質(zhì):性質(zhì)1:兩直線平行,同位角相等。如圖則。性質(zhì)2:兩直線平行,內(nèi)錯角相等。如圖4 所示,如果 a/b,則J=/ 7; 4 4=/ 6性質(zhì)3:兩直線平行,同旁內(nèi)角互補。如圖4 所示,如果 a/b,則/ 1 + / 6= 180° ; Z4+Z 7= 180 °。c性質(zhì)4:平行于同一條直線的兩條直線互相平行。如果 all b, a/ c,則b 8、平行線的判

6、定:判定1 :同位角相等,兩直線平行。如圖5所示,如果/ 1 = /5或/ 2=/ 6或/ 4=/ 8,則 a / b。判定2:內(nèi)錯角相等,兩直線平行。如圖 5所示,女口果/ 1=/7或/4=/6,則all b 。判定3:同旁內(nèi)角互補,兩直線平行。如圖5所示,如果/ 1+/6= 180°或/ 4+/7= 180° , 貝U a II bo判定4:平行于同一條直線的兩條直線互相平行。如果all b, a/ c,則b II c09、判斷一件事情的語句叫命題。 命題由 題設(shè) 和 結(jié)論 兩部分組成,有 真命題 和 假 命題 之分。如果題設(shè)成立,那么結(jié)論一定 成立,這樣的命題叫 真命

7、題;如果題設(shè)成立,那么結(jié)論不一定成立,這樣的命題叫假命題。真命題的正確性是經(jīng)過推理證實 的,這樣的真命題叫定理它可以作為繼續(xù)推理的依據(jù)。10、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。平移后,新圖形與原圖形的 形狀 和 大小 完全相同,改變的是圖形的位置。平移后得到的新圖形中每一點, 都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應(yīng)平移性質(zhì):平移前后兩個圖形中對應(yīng)點的連線段平行且相等;對應(yīng)線段相等;對 應(yīng)角相等。第六章實數(shù)【知識點一】實數(shù)的分類1、按定義分類:廠正有理數(shù)1廠有理數(shù)T4零卜有限小數(shù)和無限循環(huán)小數(shù)實數(shù)1匚負(fù)有理數(shù)正無理數(shù)L無理

8、數(shù)y卜無限不循環(huán)小數(shù)匚負(fù)無理數(shù)2、按性質(zhì)符號分類:廠正有理數(shù) 正實數(shù)0 匚正無理數(shù)了負(fù)有理數(shù) 負(fù)實數(shù)1負(fù)無理數(shù) 注:0既不是正數(shù)也不上負(fù)數(shù).【知識點二】實數(shù)的相關(guān)概念1 .相反數(shù)(1)代數(shù)意義:只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù)。0的相反數(shù)是0。(2)幾何意義:在數(shù)軸上原點的兩側(cè),與原點距離相等他個點表示的兩個數(shù)互為相反 數(shù),或數(shù)軸上,互為相反數(shù)的兩個數(shù)所對應(yīng)的點關(guān)于原點對稱。(3)互為相反數(shù)的兩個數(shù)之和等于0。若a、b互為相反數(shù),則 a+b=0。2 .絕對值同2 0正數(shù)的絕對值等于它本身,負(fù)數(shù)的絕對值等于它的相反數(shù),0的絕對值等于Oo3 .倒數(shù) (1) 0沒有倒數(shù) (2)乘

9、積是1的兩個數(shù)互為倒數(shù)。若 a、b互為倒數(shù)則 ab=1 。 4.平方根(1)如果一個數(shù)的平方等于 a,這個數(shù)就叫做a的平方根.一個正數(shù)有兩個平方根,它們 互為相反數(shù);0有一個平方根,它是0本身;負(fù)數(shù)沒有平方根.a(a>0)平方根記作 Ja。 (2)一個正數(shù)a的正的平方根,叫做 a的算術(shù)平方根。0的算術(shù)平方根是 0。a(a>0)算 術(shù)平方根記作石。5.立方根如果X3=a,那么x叫做a的立方根.一個正數(shù)有一個正的立方根:一個負(fù)數(shù)有 個負(fù)的立方根;零的立方根是零._ a的立方根記作Va。如果兩個被開方數(shù)互為相反數(shù),則它們的立方根也互為相反數(shù),反之亦然。即有3F-a【知識點三】實數(shù)與數(shù)軸數(shù)

10、軸定義: 規(guī)定了原點,正方向和單位長度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可。 【知識點四】實數(shù)大小的比較1 .對于數(shù)軸上的任意兩個點,靠右邊的點所表示的數(shù)較大。2 .正數(shù)都大于0,負(fù)數(shù)都小于0,兩個正數(shù),絕對值較大的那個正數(shù)大;為個負(fù)數(shù), 絕對值大的反而小_.3 .無理數(shù)的比較大?。簩τ陂_平方,被開方數(shù)越大,它的算術(shù)平方根越大。對于開 立方,被開方數(shù)越大,它的立方根越大。其他方法:有理化法、作差法等?!局R點五】實數(shù)的運算1 .加法同號兩數(shù)相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數(shù)相加, 取絕對值較大的加數(shù)的符號, 并用較大的絕對值減去較小的絕對值;互為相反數(shù)的兩個數(shù)相加得Q;

11、 一個數(shù)同0相加,仍得這個數(shù)。2 .減法:減去一個數(shù)等于加上這個數(shù)的相反數(shù)。3 .乘法幾個非零實數(shù)相乘,積的符號由處I數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有偶數(shù)個時,積為正;當(dāng)負(fù)因數(shù)有奇數(shù)個時,積為負(fù)。幾個數(shù)相乘,有一個因數(shù)為0,積就為Oo4 .除法 -除以一個數(shù),等于乘上這個數(shù)的倒數(shù)。兩個數(shù)相除,同號得正,號得負(fù),并型絕 對值相除。0除以任何一個不等于 0的數(shù)都得0o5 .乘方與開方(1) an所表示的意義是n個a相乘,正數(shù)的任何次嘉是正鰲,負(fù)數(shù)的偶次嘉是丑數(shù), 負(fù)數(shù)的奇次嘉是負(fù)整。(2)正數(shù)和0可以開平方,負(fù)數(shù)不能開平方;正數(shù)、負(fù)數(shù)和0都可以開立方。(3)零指數(shù)與負(fù)指數(shù)【知識點六】有效數(shù)字和科學(xué)記數(shù)法1

12、 .有效數(shù)字:一個近似數(shù),從左邊第一個不是 0的數(shù)字起,到精確到的數(shù)位為止,所有的數(shù)字,都叫 做這個近似數(shù)的有效數(shù)字。2 .科學(xué)記數(shù)法:把一個數(shù)用a 10n(1a10, n為整叟)的形式記數(shù)的方法叫科學(xué)記數(shù)法。第七章平面直角坐標(biāo)系、知識網(wǎng)絡(luò)結(jié)構(gòu)平面直角坐標(biāo)系有序數(shù)對平面直角坐標(biāo)系坐標(biāo)方法的簡單應(yīng)用用坐標(biāo)表示地理位置 用坐標(biāo)表示平移二、知識要點1、有序數(shù)對:有順序的兩個數(shù) a與b組成的數(shù)對叫做有序數(shù)對,記作(a,b)。2、平面直角坐標(biāo)系:在平面內(nèi),兩條互相垂直且有公共原點的數(shù)軸組成平面直角坐標(biāo) 系。3、橫軸、縱軸、原點:水平的數(shù)軸稱為x軸或橫軸;豎直的數(shù)軸稱為 y軸或縱軸;兩坐標(biāo)軸的交點為平面直

13、角坐標(biāo)系的原點4內(nèi)坐標(biāo):對于平面內(nèi)任一點 P,過p分別向x軸,y軸作垂線,垂足分別在 x軸,y 軸上,對應(yīng)的數(shù)a,b分別叫點P的橫坐標(biāo)和縱坐標(biāo),記作 P(a, b)。5、象限:兩條坐標(biāo)軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次 叫第二象限、第三象限、第四象限。坐標(biāo)軸上的點不在任何一個象限內(nèi)。6、各象限點的坐標(biāo)特點第一象限的點:橫坐標(biāo) 0 ,縱坐標(biāo)0 ;第二象限的點: 橫坐標(biāo)0 ,縱坐標(biāo)0 ;第三象限的點:橫坐標(biāo) 0 ,縱坐標(biāo)0 ;第四象限的點: 橫坐標(biāo)0 ,縱坐標(biāo)0。7、坐標(biāo)軸上點的坐標(biāo)特點 X軸正半軸上的點:橫坐標(biāo) >0,縱坐標(biāo)=0 ;X軸負(fù)半軸上的點:橫坐標(biāo) <

14、0,縱坐標(biāo)=0 ;y軸正半軸上的點:橫坐標(biāo) =0,縱坐標(biāo)>0 ;y軸負(fù)半軸上的點:橫坐標(biāo) =0,縱坐標(biāo)<_0;坐標(biāo)原點:橫坐標(biāo) =_0,縱坐標(biāo)=0o (填 “>”、“<”或“=”)8、點P(a, b)到X軸的距離是|bj,到y(tǒng)軸的距離是aj。9、對稱點的坐標(biāo)特點關(guān)于 X軸對稱的兩個點,橫坐標(biāo) 相等,縱坐標(biāo) 互為相反數(shù);關(guān)于y軸對稱的兩個點,縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù);關(guān)于原點對稱的兩個點, 橫坐標(biāo)、縱坐標(biāo)分別互為相反數(shù)。10、點P(2, -3)到X軸的距離是3;到y(tǒng)軸的距離是2;點P(2, 3)關(guān)于X軸對稱的點坐標(biāo)為(2, -3);點P(2, -3)關(guān)于y軸對稱的點坐

15、標(biāo)為(-2,3)。11、如果兩個點的 橫坐標(biāo) 相同,則過這兩點的直線與 y軸平行、與X軸垂直;如果兩點的 縱坐標(biāo)相同,則過這兩點的直線與X軸平行、與y軸垂直。如果點P(2, 3)、Q(2, 6),這兩點橫坐標(biāo)相同,則 PQ / y軸,PQ,X軸;如果點P(-1, 2)、Q(4, 2),這兩點縱坐標(biāo)相同,則 PQ / X軸,PQLy軸,12、平行于X軸的直線上的點的縱坐標(biāo)相同;平行于y軸的直線上的點的橫坐標(biāo)相同;在一、三象限角平分線上的點的橫坐標(biāo)與縱坐標(biāo)相同;在二、四象限角平分線上的點的 橫坐標(biāo)與縱坐標(biāo)互為相反數(shù)。如果點P(a, b)在一、三象限角平分線上,則 P點的橫坐標(biāo)與縱坐標(biāo)相同,即 a

16、= b :如果點P(a, b)在二、四象限角平分線上,則 P點的 橫坐標(biāo)與縱坐標(biāo)互為相反數(shù),艮Pa = 一 b 。13、表示一個點(或物體)的位置的方法:一是準(zhǔn)確恰當(dāng)?shù)亟⑵矫嬷苯亲鴺?biāo)系;二是正 確寫出物體或某地所在的點的坐標(biāo)。選擇的坐標(biāo)原點不同, 建立的平面直角坐標(biāo)系也不SL得到的同一個點的坐標(biāo)也不同。14、圖形的平移可以轉(zhuǎn)化為點的平移。坐標(biāo)平移規(guī)律:左右平移時,橫坐標(biāo)講行加減.縱坐標(biāo)不變;上下平移時,橫坐標(biāo)不變,縱坐標(biāo)進行加減;坐標(biāo)進行加減時,按“左 減右加、上加下減”的規(guī)律進行。如將點 P(2, 3)向左平移2個單位后得到的點的坐標(biāo) 為(0, 3);將點P(2, 3)向右平移2個單位后得

17、到的點的坐標(biāo)為(4, 3);將點P(2, 3)向 上平移2個單位后得到的點的坐標(biāo)為(4, 5);將點P(2, 3)向下平移2個單位后得到的 點的坐標(biāo)為(4., 1);將點P(2, 3)先向左平移3個單位后再向上平移 5個單位后得到的 點的坐標(biāo)為(口,8);將點P(2, 3)先向左平移3個單位后再向下平移 5個單位后得到的 點的坐標(biāo)為(,-2);將點P(2, 3)先向右平移3個單位后再向上平移 5個單位后得到的點的坐標(biāo)為(3 8);將點P(2, 3)先向右平移3個單位后再向下平移 5個單位后得到的 點的坐標(biāo)為(3 -2)。第八章二元一次方程組一、知識網(wǎng)絡(luò)結(jié)構(gòu)元一次方程定義方程的解元一次方程組定義

18、方程組的解元一次方程組元一次方程組的解法代入法加減法元一次方程組與實際問題三元一次方程組解法、知識要點1、含有未知數(shù)的等式叫方程方程左右兩邊的值相等的未知數(shù)的值叫方程的修2、方程含有兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是1,這樣的方程叫二元一次方程,二元一次方程的一般形式為ax by c (a、b、c為常數(shù),并且a 0, b 0)。使二元一次方程的左右兩邊的值相等的未知數(shù)的值叫二元一次方程的解,一個二元一次方程一般有無數(shù)組解。3、方程組含有兩個未知數(shù), 并且含有未知數(shù)的項的次數(shù)都是1,這樣的方程組叫二元一次方程組。使二元一次方程組每個方程的左右兩邊的值相等的未知數(shù)的值叫二元一次 方程組的解,

19、一個二元一次方程組一般有一個解。4、用代入法解二元一次方程組的一般步驟:觀察方程組中,是否有用含一個未知數(shù)的 式子表示另一個未知數(shù),如果有,則將它直接代入另一個方程中;如果沒有,則將其中 一個方程變形,用含一個未知數(shù)的式子表示另一個未知數(shù);再將表示出的未知數(shù)代入另一個方程中,從而消去一個未知數(shù),求出另一個未知數(shù)的值,將求得的未知數(shù)的值代入 原方程組中的任何一個方程,求出另外一個未知數(shù)的值。5、用加減法解二元一次方程組的一般步驟:(1)方程組的兩個方程中,如果同一個未知數(shù)的系數(shù)既不相等又不互為相反數(shù),就用適當(dāng)?shù)臄?shù)去乘方程的兩邊,使同一個未知數(shù)的系數(shù)相等或互為相反數(shù);(2)把兩個方程的兩邊分別相加

20、或相減,消去一個未知數(shù);(3)解這個一元一次方程,求出一個未知數(shù)的值;(4)將求出的未知數(shù)的值代入原方程組中的任何一個方程,求出另外一個未知數(shù)的值,從而得到原方程組的解。6、解三元一次方程組的一般步驟:觀察方程組中未知數(shù)的系數(shù)特點,確定先消去哪 個未知數(shù);利用代入法或加減法,把方程組中的一個方程,與另外兩個方程分別組成 兩組,消去同一個未知數(shù),得到一個關(guān)于另外兩個未知數(shù)的二元一次方程組;解這個 二元一次方程組,求得兩個未知數(shù)的值;將這兩個未知數(shù)的值代入原方程組中較簡單 的一個方程中,求出第三個未知數(shù)的值,從而得到原三元一次方程組的解。第九章不等式與不等式組一、知識網(wǎng)絡(luò)結(jié)構(gòu)不等式不等式相關(guān)概念不

21、等式的解不等式的解集一元一次不等式不等式與不等式組性質(zhì)1不等式的性質(zhì)性質(zhì)2性質(zhì)3元一次不等式組不等式組一元一次不等式組的解法性質(zhì)2:不等式的兩邊同時乘以 用字母表示為:如果a b,c 0 ,那么ac如果a b,c 0 ,那么ac性質(zhì)3:不等式的兩邊同時乘以 用字母表示為:如果a b,c 0 ,那么acbc(或-);如果 a b,c c c0,那么 ac bc (或國 );c c元一次不等式(組)與實際問題、知識要點1、用不等號表示不等關(guān)系的式子叫不等式,不等號主要包括: =二、 、£ 、2、在含有未知數(shù)的不等式中,使不等式成立的未知數(shù)的值叫不等式的解,一個含有未 知數(shù)的不等式的所有的

22、解組成的集合,叫這個不等式的解集。 不等式的解集可以在數(shù)軸上表示出來。求不等式的解集的過程叫解不等式。含有一個未知數(shù),并且所含未知數(shù)的 項的次數(shù)都是1,這樣的不等式叫一元一次不等式。3、不等式的性質(zhì):性質(zhì)1:不等式的兩邊同時加上(或減去)同一個數(shù)(或式子),不等號的方向 不變 用字母表示為:如果a b ,那么a c bc;如果ab ,那么a c b c ;如果a b ,那么a c bc;如果ab,那么a c b c。(或除以)同一個 正數(shù),不等號的方向 不變。bc(或與»);如果a b, c 0,那么ac bc (或月-); c cc cbc(或與 止);如果a b,c 0,那么ac bc(或且-); c cc c(或除以)同一個 負(fù)數(shù),不等號的方向 改

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論