版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、導(dǎo)數(shù)的基本公式與運(yùn)算法則導(dǎo)數(shù)的基本公式與運(yùn)算法則基本初等函數(shù)的導(dǎo)數(shù)公式基本初等函數(shù)的導(dǎo)數(shù)公式(x ) = x - -1 .(ax) = ax lna .(ex) = ex.0 (cc為任意常數(shù)).ln1)(logaxxa .1)(lnxx (sin x) = cos x.(cos x) = - - sin x.(tan x) = = sec2x .(cot x) = = - - csc2x .(sec x) = = sec x tan x .(csc x) = = - - csc x cot x .,11)(arcsin2xx- - 另外還有反三角函數(shù)的導(dǎo)數(shù)公式:另外還有反三角函數(shù)的導(dǎo)數(shù)公式:
2、,11)(arccos2xx- - - ,11)(arctan2xx .11)cotarc(2xx - - 定理定理2.2. 1設(shè)函數(shù)設(shè)函數(shù) u(x)、v( (x) ) 在在 x 處可導(dǎo)處可導(dǎo),)0)()()( xuxuxv在在 x 處也可導(dǎo),處也可導(dǎo),(u(x) v(x) = u (x) v (x);(u(x)v(x) = u(x)v (x) + + u (x)v(x);.)()()()()()()(2xuxvxuxvxuxuxv - - 導(dǎo)數(shù)的四則運(yùn)算導(dǎo)數(shù)的四則運(yùn)算且且則它們的和則它們的和、差差、積與商積與商推論推論 1(cu(x) = cu (x) (c 為常數(shù)為常數(shù)).推論推論 2.)
3、()()(12xuxuxu - - ()uvwu vwuv wuvw乘法法則的推廣:乘法法則的推廣:補(bǔ)充例題:補(bǔ)充例題: 求下列函數(shù)的導(dǎo)數(shù):求下列函數(shù)的導(dǎo)數(shù):解解根據(jù)推論根據(jù)推論 1 可得可得 (3x4) = 3(x4) ,(5cos x) = 5(cos x) ,(cos x) = - - sin x,(ex) = ex, (1) = 0,故故f (x) = (3x4 - - ex + 5cos x - - 1) = (3x4) - -( (ex ) ) + (5cos x) - - (1) = 12x3 - - ex - - 5sin x .f (0) = (12x3 - - ex - -
4、 5sin x)|x=0 = - - 1又又(x4) = 4x3,例例 1設(shè)設(shè) f (x) = 3x4 ex + 5cos x - - 1,求,求 f (x) 及及 f (0).例例 2設(shè)設(shè) y = xlnx , 求求 y .解解根據(jù)乘法公式,有根據(jù)乘法公式,有y = (xlnx) = x (lnx) (x) lnxxxxln11 .ln1x 解解根據(jù)除法公式,有根據(jù)除法公式,有22222)1()1()1()1)(1(11 - - - - - - - - xxxxxxxy例例 3設(shè)設(shè),112 - - xxy求求 y .2222)1()1()1()()1()(1( - - - - - - xxx
5、xx.)1(12)1()1(2)1(222222 - - - - - xxxxxxx教材教材P32 P32 例例2 2 求下列函數(shù)的導(dǎo)數(shù):求下列函數(shù)的導(dǎo)數(shù):3(1)cosyxx-2(2)xyx e2(3)1xyx-32(4)23 sinyxxxe解:解:332(1)(cos )() (cos )3sinyxxxxxx-2222(2)()()()2(2)xxxxxxyx exex exex exxe22222(1)(1)(3)()1(1)xxxxxyxx-2221( 2 )(1)xxxx-222)1 (1xx- 32(4)(2) (3 sin ) ()yxxxe0)sin( 3)(23-xxx)
6、cos(sin362xxxx- 高階導(dǎo)數(shù)高階導(dǎo)數(shù)如果可以對(duì)函數(shù)如果可以對(duì)函數(shù) f(x) 的導(dǎo)函數(shù)的導(dǎo)函數(shù) f (x) 再求導(dǎo),再求導(dǎo),所得到的一個(gè)新函數(shù),所得到的一個(gè)新函數(shù), 稱為函數(shù)稱為函數(shù) y = f(x) 的二階導(dǎo)數(shù),的二階導(dǎo)數(shù),.dd22xy記作記作 f (x) 或或 y 或或如對(duì)二階導(dǎo)數(shù)再求導(dǎo),則如對(duì)二階導(dǎo)數(shù)再求導(dǎo),則稱三階導(dǎo)數(shù),稱三階導(dǎo)數(shù),.dd33xy記作記作 f (x) 或或 四階或四階以上導(dǎo)四階或四階以上導(dǎo)數(shù)記為數(shù)記為 y(4),y(5), ,y(n),dd44xy,ddnnxy或或 , 而把而把 f (x) 稱為稱為 f (x) 的一階導(dǎo)數(shù)的一階導(dǎo)數(shù).例例3 3 求下列函數(shù)
7、的二階導(dǎo)數(shù)求下列函數(shù)的二階導(dǎo)數(shù)(1)cosyxx(2)arctanyx(1)cos( sin )cossinyxxxxxx-xxxxxxxycossin2)cos(sinsin-21(2)1yx222)1 ()1 (xxy-22)1 (2xx-解:解:二階以上的導(dǎo)數(shù)可利用后面的數(shù)學(xué)軟件二階以上的導(dǎo)數(shù)可利用后面的數(shù)學(xué)軟件來計(jì)算來計(jì)算 2.2.4 復(fù)合函數(shù)的求導(dǎo)法則2.2 ( )( )( ( )( ) ( ) dydy dudxdu dxdyfuu xduu xxyf uuyf u xxx定理若函數(shù)在點(diǎn) 可導(dǎo),函數(shù) 在點(diǎn) 處可導(dǎo),則復(fù)合函數(shù)在點(diǎn) 可導(dǎo),且或記作:推論推論設(shè)設(shè) y = f (u) ,
8、 u = (v), v = (x) 均均可導(dǎo)可導(dǎo),則復(fù)合函數(shù)則復(fù)合函數(shù) y = f ( (x) 也可導(dǎo)也可導(dǎo),.xvuxvuyy 以上法則說明:復(fù)合函數(shù)對(duì)自變量的導(dǎo)數(shù)等于復(fù)合以上法則說明:復(fù)合函數(shù)對(duì)自變量的導(dǎo)數(shù)等于復(fù)合函數(shù)對(duì)中間變量的導(dǎo)數(shù)乘以中間變量對(duì)自變量的導(dǎo)數(shù)函數(shù)對(duì)中間變量的導(dǎo)數(shù)乘以中間變量對(duì)自變量的導(dǎo)數(shù). .23tan4.1(31) ; 2)sin(2); 3)lncos ;4);5)2xxyxyxyxyey-例 求下列函數(shù)的導(dǎo)數(shù):)32322222222(1)( ), ( )31,( )3( )( )3(31)(31)3(31)618 (31)yux u xxyuxuxu xxxxxx
9、x解: 函數(shù)可以分解為明緯電源 明緯開關(guān)電源 仧莒徇 Microsoft Office PowerPoint,是,是微軟公司的演示文稿軟件。用戶可以在投影微軟公司的演示文稿軟件。用戶可以在投影儀或者計(jì)算機(jī)上進(jìn)行演示,也可以將演示文儀或者計(jì)算機(jī)上進(jìn)行演示,也可以將演示文稿打印出來,制作成膠片,以便應(yīng)用到更廣稿打印出來,制作成膠片,以便應(yīng)用到更廣泛的領(lǐng)域中。利用泛的領(lǐng)域中。利用Microsoft Office PowerPoint不僅可以創(chuàng)建演示文稿,還可不僅可以創(chuàng)建演示文稿,還可以在互聯(lián)網(wǎng)上召開面對(duì)面會(huì)議、遠(yuǎn)程會(huì)議或以在互聯(lián)網(wǎng)上召開面對(duì)面會(huì)議、遠(yuǎn)程會(huì)議或在網(wǎng)上給觀眾展示演示文稿在網(wǎng)上給觀眾展示演
10、示文稿。 Microsoft Office PowerPoint做出來的東做出來的東西叫演示文稿,其格式后綴名為:西叫演示文稿,其格式后綴名為:ppt、pptx;或者也可以保存為:;或者也可以保存為:pdf、圖片格式、圖片格式等等(2)2 cos(2) (2) 1cos(2)2cos(2)2xyxxxxxx-把當(dāng)作中間變量,(3)cos1sin(cos )tancoscosxxyxxxx - -把當(dāng)作中間變量,tantan2tan(4)tan()(tan )secxxxxyeexxe把當(dāng)作中間變量,(5)(2 )2 ln2 ()2 ln2xxxxyx- -把當(dāng)作中間變量, 先將要求導(dǎo)的函數(shù)分解
11、成基本初等函數(shù)先將要求導(dǎo)的函數(shù)分解成基本初等函數(shù),或或常數(shù)與基本初等函數(shù)的和、差、積、商常數(shù)與基本初等函數(shù)的和、差、積、商. 任何初等函數(shù)的導(dǎo)數(shù)都可以按常數(shù)和基本任何初等函數(shù)的導(dǎo)數(shù)都可以按常數(shù)和基本初等函數(shù)的求導(dǎo)公式和上述復(fù)合函數(shù)的求導(dǎo)初等函數(shù)的求導(dǎo)公式和上述復(fù)合函數(shù)的求導(dǎo)法則求出法則求出. 復(fù)合函數(shù)求導(dǎo)的關(guān)鍵復(fù)合函數(shù)求導(dǎo)的關(guān)鍵: 正確分解初等函數(shù)正確分解初等函數(shù)的復(fù)合結(jié)構(gòu)的復(fù)合結(jié)構(gòu).求導(dǎo)方法小結(jié):求導(dǎo)方法小結(jié):2 3221( 1) ; (2)cos3 (3)32 4 lgcos(32)xyxyyxxx - -練習(xí):求下列函數(shù)的導(dǎo)數(shù)(課堂練習(xí))();( )222222222(1) 6 ( 1)
12、(2) 3 ln3 sin323(3) 232cos(32)sin(32)(4) (32)4 tan(32)cos(32)cos(32)xxyxxyxyxxxxyxxxxx- - -解:例例5 5:求下列函數(shù)的導(dǎo)數(shù):求下列函數(shù)的導(dǎo)數(shù)(1) (2)(3) (4)2cosxy 232-xxeyxylnlnln)1ln(2xxy2.2.5 隱函數(shù)的導(dǎo)數(shù)00( )yxF xyF xyyy x與 的關(guān)系由方程( , ) 確定,未解出因變量的方程( , )= 所確定的函數(shù)稱為隱函數(shù)6( )1.ydyyy xyxedx 例 設(shè)函數(shù)由方程所確定,求(1) (),()(1) 1yyyyyyyyyxyxeyexe
13、ex eyxeyeeyxe-解:上式兩邊對(duì) 求導(dǎo),則有 即1;2.xyyy隱函數(shù)的求導(dǎo)步驟:()方程兩邊對(duì) 求導(dǎo),求導(dǎo)過程中把 視為中間變量,得到一個(gè)含有 的等式( )從所得等式中解出227( )cos().dyyy xyxyxdx-例 設(shè)函數(shù)由方程所確定,求222222222222222222 sin() ()1 sin() (22)1 2 sin()2 sin()12 sin() 1 2 sin()1 2 sin()12 sin()xxyxyxyyxyxyyyxxyyxyyyxyyxxyxxyyyxy -解:方程兩邊分別對(duì) 求導(dǎo),得2( )2.dyyy xxyyxdx練習(xí):設(shè)函數(shù)由方程所確
14、定,求2 () ()2 22(2 )222xxyyyx yy yxyyyyyxy-解:兩邊分別對(duì) 求導(dǎo),得 二元函數(shù)的偏導(dǎo)數(shù)的求法二元函數(shù)的偏導(dǎo)數(shù)的求法求 對(duì)自變量 (或 )的偏導(dǎo)數(shù)時(shí),只須將另一自變量 (或 )看作常數(shù),直接利用一元函數(shù)求導(dǎo)公式和四則運(yùn)算法則進(jìn)行計(jì)算.),(yxfz xyyx例例1 1 設(shè)函數(shù)設(shè)函數(shù)324( , )23,f x yxx yy-求求( , ),xfx y( , ),yfx y(1,1),xf(1, 1),yf-解:解: xyxyyxxyxfxx43)32(),(2423-32423122)32(),(yxyyxxyxfyy-111413) 1 , 1 (2-xf
15、14) 1(1212) 1, 1 (32-yf例例2 2 設(shè)函數(shù)設(shè)函數(shù) 求),ln()(2222yxyxzxzyz解:解:xxyxyxyxyxxz )ln()ln()(222222222222222212 ln()()()xxxyxyxyxy222 ln()2xxyx222 ln() 1xxy類似可得類似可得2222222)()ln(2yxyyxyxyyz222 ln() 1yxy 二元函數(shù)的二階偏導(dǎo)數(shù)二元函數(shù)的二階偏導(dǎo)數(shù)函數(shù)函數(shù) z = f ( x , y ) 的兩個(gè)偏導(dǎo)數(shù)的兩個(gè)偏導(dǎo)數(shù)),(yxfxzx ),(yxfyzy 一般說來仍然是一般說來仍然是 x , y 的函數(shù),的函數(shù), 如果這兩
16、個(gè)函數(shù)關(guān)于如果這兩個(gè)函數(shù)關(guān)于 x , y 的偏導(dǎo)數(shù)也存在,的偏導(dǎo)數(shù)也存在, 則稱它們的偏導(dǎo)數(shù)是則稱它們的偏導(dǎo)數(shù)是 f (x , y)的二階偏導(dǎo)數(shù)的二階偏導(dǎo)數(shù).依照對(duì)變量的不同求導(dǎo)次序,依照對(duì)變量的不同求導(dǎo)次序,二階偏導(dǎo)數(shù)有四二階偏導(dǎo)數(shù)有四個(gè):(用符號(hào)表示如下)個(gè):(用符號(hào)表示如下) xzxxzx22xz ),(yxfxx ;xxz xzyxzyyxz 2),(yxfxy ;xyz yzxyzxxyz 2),(yxfyx ;yxz yzyyzy22yz ),(yxfyy .yyz 其中其中 及及 稱為二階混合偏導(dǎo)數(shù)稱為二階混合偏導(dǎo)數(shù).),(yxfxy ),(yxfyx 類似的,可以定義三階、四階、類似的,可以定義三階、四階、 、n 階偏導(dǎo)數(shù),階偏導(dǎo)數(shù),二階及二階以上的偏導(dǎo)數(shù)稱為高階偏導(dǎo)數(shù),二階及二階以上的偏導(dǎo)數(shù)稱為高階偏導(dǎo)數(shù),),(,),(yxfyyxfx而稱為函數(shù)稱為函數(shù) f ( x , y ) 的一階偏導(dǎo)數(shù)的一階偏導(dǎo)數(shù).注:當(dāng)兩個(gè)二階導(dǎo)數(shù)連續(xù)時(shí),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年一級(jí)造價(jià)師之建設(shè)工程技術(shù)與計(jì)量(交通)題庫含答案(a卷)
- 江蘇省鹽城市東臺(tái)鹽都2025屆中考一模生物試題含解析
- 2024年09月內(nèi)蒙古浦發(fā)銀行呼和浩特分行社會(huì)招考(99)筆試歷年參考題庫附帶答案詳解
- 2024年09月全國2024年中銀富登村鎮(zhèn)銀行校園招考筆試歷年參考題庫附帶答案詳解
- 農(nóng)村群眾文化建設(shè)工作培訓(xùn)
- 安徽省江淮十校2025屆中考生物最后一模試卷含解析2
- 2024年09月2024渤海銀行廣州分行校園招聘筆試歷年參考題庫附帶答案詳解
- 2024年09月2024屆中國民生銀行金融租賃秋季校園招聘筆試歷年參考題庫附帶答案詳解
- 2024年09月2024中國銀行小語種培養(yǎng)崗位校園招聘10人筆試歷年參考題庫附帶答案詳解
- 2024年08月蘇州銀行零售銀行總部企劃綜合部招聘1人筆試歷年參考題庫附帶答案詳解
- 2025年四川長寧縣城投公司招聘筆試參考題庫含答案解析
- 2024年06月上海廣發(fā)銀行上海分行社會(huì)招考(622)筆試歷年參考題庫附帶答案詳解
- TSG 51-2023 起重機(jī)械安全技術(shù)規(guī)程 含2024年第1號(hào)修改單
- 計(jì)算機(jī)科學(xué)導(dǎo)論
- 浙江省杭州市錢塘區(qū)2023-2024學(xué)年四年級(jí)上學(xué)期英語期末試卷
- 《工程勘察設(shè)計(jì)收費(fèi)標(biāo)準(zhǔn)》(2002年修訂本)
- 2024年一級(jí)消防工程師《消防安全技術(shù)綜合能力》考試真題及答案解析
- 2024-2025學(xué)年六上科學(xué)期末綜合檢測卷(含答案)
- 安徽省森林撫育技術(shù)導(dǎo)則
- 2023七年級(jí)英語下冊(cè) Unit 3 How do you get to school Section A 第1課時(shí)(1a-2e)教案 (新版)人教新目標(biāo)版
- 泌尿科主任述職報(bào)告
評(píng)論
0/150
提交評(píng)論