2020年北京市海淀區(qū)高考數(shù)學(xué)一模試卷(文科)含答案解析_第1頁
2020年北京市海淀區(qū)高考數(shù)學(xué)一模試卷(文科)含答案解析_第2頁
2020年北京市海淀區(qū)高考數(shù)學(xué)一模試卷(文科)含答案解析_第3頁
2020年北京市海淀區(qū)高考數(shù)學(xué)一模試卷(文科)含答案解析_第4頁
2020年北京市海淀區(qū)高考數(shù)學(xué)一模試卷(文科)含答案解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2020年北京市海淀區(qū)高考數(shù)學(xué)一模試卷(文科)一、選擇題共8小題,每小題5分,共40分.在每小題列出的四個(gè)選項(xiàng)中,選出符合題目 要求的一項(xiàng).1 .已知集合 A=xCz| - 2< x<3, B=x| -2<x<1,貝 U A AB=()A. -2, - 1, 0B. -2, - 1, 0, 1 C. x| -2<x<1 D. x| - 2<x<12 .已知向量工二(1, 1), b=(t3 9),若/ S,則 t=()A. 1B. 3C. ± 3 D. - 3z=i (其中i為虛數(shù)單位),則輸出的S值為(3 .某程序的框圖如圖所示,若輸

2、入的第1頁(共16頁)A. - 1 B. 1 C, - i D. i4.右 x,z=!"x+y的最大值為(57A. X B. 3 C. 77 D. 45.某三棱錐的三視圖如圖所示,則其體積為()A. . B. - C.D.P到x軸的6 .已知點(diǎn)P (x。,y。)在拋物線 W: y2=4x上,且點(diǎn)P到W的準(zhǔn)線的距離與點(diǎn)距離相等,則x0的值為()A.B. 1C.D. 2第4頁(共16頁)1 sinCit+CL ) ,7 .已知函數(shù)f (x) ='jI COS”是函數(shù)f(x)是偶函數(shù)的( )A .充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件8 .某生產(chǎn)基

3、地有五臺(tái)機(jī)器,現(xiàn)有五項(xiàng)工作待完成,每臺(tái)機(jī)器完成每項(xiàng)工作后獲得的效益值如表所示.若每臺(tái)機(jī)器只完成一項(xiàng)工作,且完成五項(xiàng)工作后獲得的效益值總和最大,則下列敘述正確的是( 工作A.甲只能承擔(dān)第四項(xiàng)工作C.丙可以不承擔(dān)第三項(xiàng)工作B.乙不能承擔(dān)第二項(xiàng)工作D,獲得的效益值總和為78效益一一二四五機(jī)器甲1517141715乙2223212020丙913141210丁7911911戊1315141511二、填空題共6小題,每小題5分,共30分.9 .函數(shù)f (x) =.2空Z的定義域?yàn)?0 .已知數(shù)列an的前n項(xiàng)和為Sn,且 二門 一 4n,則 a2- a1=11 .已知l為雙曲線C:22=1的一條漸近線,其傾

4、斜角為JC7,且C的右焦點(diǎn)為(2,0),則C的右頂點(diǎn)為 , C的方程為 .12.在二,河 1口g/這三個(gè)數(shù)中,最小的數(shù)是 13.已知函數(shù)f (x)=sin (2x+(j),若12A則函數(shù)f (x)的單調(diào)增區(qū)間為.14.給定正整數(shù)k>2,若從正方體 ABCD - A1B1C1D1的8個(gè)頂點(diǎn)中任取k個(gè)頂點(diǎn),組成一 個(gè)集合 M=Xi, X2,,Xk,均滿足? Xi, XjC M, ? Xi, XtC M,使得直線 XiXjXXlXt, 則k的所有可能取值是 .三、解答題共6小題,15.在 ABC 中,/共80分.解答應(yīng)寫出文字說明、演算步驟或證明過程.2元C=三, a=6.(I )若 c=14

5、,求 sinA 的值;(n )若 ABC的面積為3/3,求c的值.16 .已知數(shù)列an是等比數(shù)列,其前 n項(xiàng)和為Sn,滿足S2+ai=0, a3=12.(I )求數(shù)列an的通項(xiàng)公式;(n )是否存在正整數(shù) n,使得Sn>2020?若存在,求出符合條件的n的最小值;若不存在, 說明理由.17 .如圖,在四棱錐 P - ABCD中,PAL平面ABCD ,四邊形 ABCD為正方形,點(diǎn) M , N 分別為線段PB, PC上的點(diǎn),MN ±PB.(I )求證:平面PBCL平面PAB;(n )求證:當(dāng)點(diǎn) M不與點(diǎn)P, B重合時(shí),MN /平面ABCD ;法,從某班選出10人參加活動(dòng),在活動(dòng)前,

6、對(duì)所選的10名同學(xué)進(jìn)行了國學(xué)素養(yǎng)測(cè)試,這10名同學(xué)的性別和測(cè)試成績(jī)(百分制)的莖葉圖如圖所示.(I )根據(jù)這10名同學(xué)的測(cè)試成績(jī),分別估計(jì)該班男、女生國學(xué)素養(yǎng)測(cè)試的平均成績(jī);(n )這10名同學(xué)中男生和女生的國學(xué)素養(yǎng)測(cè)試成績(jī)的方差分別為sj ,試比較Si與日:的大小(只需直接寫出結(jié)果);(出)若從這10名同學(xué)中隨機(jī)選取一男一女兩名同學(xué),求這兩名同學(xué)的國學(xué)素養(yǎng)測(cè)試成績(jī)均為優(yōu)良的概率.(注:成績(jī)大于等于 75分為優(yōu)良)畀女卜8 7 670 6 9H 7 819.已知橢圓C:/ +-=1(a>b>0)的離心率為,橢圓C與y軸交于A、B兩點(diǎn),| AB | =2 .(I )求橢圓C的方程;(

7、n)已知點(diǎn)P是橢圓C上的動(dòng)點(diǎn),且直線 PA, PB與直線x=4分別交于M、N兩點(diǎn),是 否存在點(diǎn)P,使得以MN為直徑的圓經(jīng)過點(diǎn)(2, 0) ?若存在,求出點(diǎn) P的橫坐標(biāo);若不存 在,說明理由.20.已知函數(shù)f (x)(1)求曲線y=f (x)在點(diǎn)(0, f (0 )處的切線方程;a的最小值.(2)求函數(shù)f (x)的零點(diǎn)和極值;(3)若對(duì)任意xi, X2Ca, +8),都有f(xi) - f (X2)成立,求實(shí)數(shù) e2020年北京市海淀區(qū)高考數(shù)學(xué)一模試卷(文科)參考答案與試題解析一、選擇題共8小題,每小題5分,共40分.在每小題列出的四個(gè)選項(xiàng)中,選出符合題目 要求的一項(xiàng).1 .已知集合 A=xCz

8、| - 2< x<3, B=x| -2<x<1,貝 U A AB=()A. -2, - 1, 0 B. -2, - 1, 0, 1 C. x| -2<x<1 D. x| - 2<x<1 【考點(diǎn)】交集及其運(yùn)算.【分析】由A與B ,求出兩集合的交集即可.【解答】 解:. A=xC Z| 2wxv3= 2, 1,0, 1, 2, B=x| -2<x<1,.A AB= -2, - 1 , 0,故選:A.2.已知向量t).9),若;/,凡則 t=()A. 1 B. 3 C. ± 3 D. - 3【考點(diǎn)】平面向量共線(平行)的坐標(biāo)表示.

9、【分析】由向量共線可得t的方程,解方程可得.【解答】解:.向量?。?, 3 芯9),且1X9-t2=0,解得 t=±3故選:Cz=i (其中i為虛數(shù)單位),則輸出的S值為(3.某程序的框圖如圖所示,若輸入的A. - 1【考點(diǎn)】B. 1程序框圖.C. - i D. i第6頁(共16頁)【分析】由已知中的程序框圖及已知中輸入z=i,可得:進(jìn)入循環(huán)的條件為nw5,即n=1,2,,5,模擬程序的運(yùn)行結(jié)果,即可得到輸出的S值.【解答】解:模擬執(zhí)行程序,可得不滿足條件n>5, S=i1, n=2不滿足條件n>5, S=i2, n=3不滿足條件n>5, S=i3, n=4不滿足條

10、件n>5, S=i4, n=5不滿足條件n>5, S=i5, n=6滿足條件n>5,退出循環(huán),輸出 S=i5=i.故選:D.4.若 x,y滿足it- y+2>u“工+第- 4<0,貝uz=yx+y的最大值為(A.【考點(diǎn)】【分析】【解答】7B. 3C. - D. 4簡(jiǎn)單線性規(guī)劃.作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義進(jìn)行求解即可.解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:由 z=yx+y 得 y=平移 y= -f-x+y,d-a由圖象知當(dāng)直線y=-x+y經(jīng)過點(diǎn)A直線的截距最大, 此時(shí)z最大,3),5.某三棱錐的三視圖如圖所示,則其體積為().V3 B V3 c

11、 2732V6A B CD3233【考點(diǎn)】由三視圖求面積、體積.由三視圖之間的關(guān)系求出幾何元素的長(zhǎng)度,【分析】由三視圖知該幾何體是一個(gè)三棱錐, 錐體的體積公式求出幾何體的體積.【解答】 解:根據(jù)三視圖可知幾何體是一個(gè)三棱錐,底面是一個(gè)三角形:即俯視圖:底是 2、高是側(cè)視圖的底邊 必三棱錐的高是側(cè)視圖和正視圖的高1,幾何體的體積V=/吟專,故選:A.6.已知點(diǎn)p(X0, yo)在拋物線 W: y2=4x上,且點(diǎn)P到W的準(zhǔn)線的距離與點(diǎn) P到X軸的 距離相等,則X0的值為()A.3B. 1 C. D. 2拋物線的簡(jiǎn)單性質(zhì).求得拋物線的焦點(diǎn)和準(zhǔn)線方程,運(yùn)用拋物線的定義可得點(diǎn)P到W的準(zhǔn)線的距離即為P到W

12、的焦點(diǎn)F的距離,由題意可得| PF| 二| yo| ,即可得到X0=1 .【解答】解:拋物線 W: y2=4x的焦點(diǎn)為(1,0),準(zhǔn)線方程為x= - 1 , 由拋物線的定義可得點(diǎn) P到W的準(zhǔn)線的距離即為 P到W的焦點(diǎn)F的距離, 由題意可得| PF|二| yo| ,則PFx軸,可得xo=1, 故選:B.7.已知函數(shù)f (x)”是函數(shù)f(x)是偶函數(shù)的( )A .充分不必要條件B.必要不充分條件C.充分必要條件D .既不充分也不必要條件【考點(diǎn)】必要條件、充分條件與充要條件的判斷.【分析】函數(shù)f(x)是偶函數(shù),貝u sin (x+a) =cos( - x+a),可得sin(x+a)書in(今dK 一

13、 口), 化簡(jiǎn)解出即可判斷出結(jié)論.【解答】解:函數(shù) f(x)是偶函數(shù),則 sin(x+a)=co s( x+a),可得 sin(x+a)=sin(rK - 口 ),.X+o+2k7i=個(gè) +x - a, 或 兀-(x+a) +2k tt= . +x - a, 解得 口二-kn4,(kCZ).,爐子”是函數(shù)f(X)是偶函數(shù)”的充分不必要條件.故選:A.8 .某生產(chǎn)基地有五臺(tái)機(jī)器,現(xiàn)有五項(xiàng)工作待完成,每臺(tái)機(jī)器完成每項(xiàng)工作后獲得的效益值如表所示.若每臺(tái)機(jī)器只完成一項(xiàng)工作,且完成五項(xiàng)工作后獲得的效益值總和最大,則下列第11頁(共16頁)敘述正確的是()工作效益一一二四五機(jī)器甲1517141715乙22

14、23212020丙913141210丁7911911戊1315141511A.甲只能承擔(dān)第四項(xiàng)工作 B.乙不能承擔(dān)第二項(xiàng)工作C.丙可以不承擔(dān)第三項(xiàng)工作D.獲得的效益值總和為 78【考點(diǎn)】進(jìn)行簡(jiǎn)單的合情推理.17+23+14+11 + 15=80,但不能同時(shí)【分析】由表知道,五項(xiàng)工作后獲得的效益值總和最大為 取得,再分類討論,得出乙若不承擔(dān)第二項(xiàng)工作,承擔(dān)第一項(xiàng),甲承擔(dān)第二項(xiàng)工作,則戊承擔(dān)第四項(xiàng)工作,即可得出結(jié)論.【解答】解:由表知道,五項(xiàng)工作后獲得的效益值總和最大為17+23+14+11+15=80,但不能同時(shí)取得.要使總和最大,甲可以承擔(dān)第一或四項(xiàng)工作,丙只能承擔(dān)第三項(xiàng)工作,丁則不可以承擔(dān)第

15、三 項(xiàng)工作,所以丁承擔(dān)第五項(xiàng)工作;乙若承擔(dān)第四項(xiàng)工作;戊承擔(dān)第一項(xiàng)工作,此時(shí)效益值總和為 17+23+14+11 +13=78 ;乙若不承擔(dān)第二項(xiàng)工作,承擔(dān)第一項(xiàng),甲承擔(dān)第二項(xiàng)工作,則戊承擔(dān)第四項(xiàng)工作,此時(shí)效益值總和為 17+22+14+11+15=79 ,所以乙不承擔(dān)第二項(xiàng)工作, 故選:B.二、填空題共6小題,每小題5分,共30分.9 .函數(shù)f (x) =Jz* 一 2的定義域?yàn)?1, +8)【考點(diǎn)】函數(shù)的定義域及其求法.【分析】根據(jù)函數(shù)f (x)的解析式,列出使解析式有意義的不等式,求出解集即可.【解答】 解:二函數(shù)f (x) =J2K -工,.-2x- 2>0,即 2x>2;

16、解得x> 1,.f (x)的定義域?yàn)?, +8).故答案為:1, +8).10.已知數(shù)列an的前n項(xiàng)和為Sn,且Sn二門24n,貝U a2ai= 2【考點(diǎn)】數(shù)列遞推式.【分析】 通過二門24n,利用a2- a1=S2- 2S1計(jì)算即得結(jié)論.【解答】解: S埼二口 4耳a2- a1= (a1+a2) 2a1=S2 - 2S1=(4-8) -2(1-4)二2,故答案為:2.2,11.已知l為雙曲線C:=亍-言=1的一條漸近線,其傾斜角為 且C的右焦點(diǎn)為(0),則C的右頂點(diǎn)為(血 0)C的方程為【考點(diǎn)】雙曲線的簡(jiǎn)單性質(zhì).【分析】由題意可得c=2,求出漸近線方程,解方程可得 方程.【解答】 解:

17、由題意可得c=2,即a2+b2=4,k冗一條漸近線的斜率為 k=tan=1, a4解得a=b=6,則雙曲線的右頂點(diǎn)為(6,0),a, b,即可得到右頂點(diǎn)和雙曲線的2C的方程為三222故答案為:(-72, 0), - =1 .221 虧112.在上,1 口弓g2這三個(gè)數(shù)中,最小的數(shù)是 與一【考點(diǎn)】對(duì)數(shù)值大小的比較.【分析】利用指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性即可得出.【解答】解::前我>1,log 32 > lo Si,在L2這三個(gè)數(shù)中,最小的數(shù)是2 '上'口去故答案為:.71、“5冗、13.已知函數(shù) f (x) =sin (2x+(j),若 £七叵)一 f (一

18、)=2,£K I 7U間為k lH+五,k" .【考點(diǎn)】正弦函數(shù)的圖象.則函數(shù)f (x)的單調(diào)增區(qū). .p, 丁,兀-573T【分析】 由條件可得 一+ j=2k#、,且:+(j)=2k %,626LkCZ,求得。的值,可得f(x)的解析式,再利用正弦函數(shù)的單調(diào)性得出結(jié)論.【解答】 解:二函數(shù)f (x) =sin (2x+<f),若則函數(shù)的周期為為7U12)=sin (+ 4) =1, f (一12)=sin (5K6+ 4)JT-Z-+(j)=2k o7T71+且一+ j=2k 兀-7jr,kCZ,即 行Zkk, kCZ.令2kL兀T7Tf (x)=sin().TT

19、< 2x+ -3故答案為:kn5兀12冗< 2k 時(shí)271,求得k兀-元< x< k 7t+14.給定正整數(shù)k>2,若從正方體 ABCD - A1B1C1D1的8個(gè)頂點(diǎn)中任取k個(gè)頂點(diǎn),組成一 個(gè)集合 M=X1, X2,,Xk,均滿足? Xi, XjC M, ? X|, XtC M,使得直線 XiXj±X|Xt, 則k的所有可能取值是6, 7, 8 .【考點(diǎn)】棱柱的結(jié)構(gòu)特征.【分析】由題意,?Xi, XjCM, ? Xi, XtCM,使得直線XiXjXXlXt,則k至少要取6, 可以保證由四點(diǎn)共面,即可得出結(jié)論.【解答】 解:由題意,?Xi, XjCM,

20、?X|, XtCM,使得直線XiXj±X|Xt,則k至少要取6,即可保證有四點(diǎn)共面,由正方形的性質(zhì),四點(diǎn)共面時(shí),? Xi, XtCM,使得直線XiXjXXiXt,.k的所有可能取值是 6, 7, 8.故答案為:6, 7, 8.三、解答題共6小題,共80分.解答應(yīng)寫出文字說明、演算步驟或證明過程.2K15 .在 ABC 中,/ C=1,(I )若 c=14,求 sinA 的值;(n )若 ABC的面積為3/3,求c的值.【考點(diǎn)】 正弦定理;余弦定理.【分析】(I)利用正弦定理解出;(II)根據(jù)面積計(jì)算b,再利用余弦定理解出c.【解答】 解:(I)在4ABC中,由正弦定理得:a _ 。s

21、i nA sinC,b=2.2x2X 6 義(-y)=52.由余弦定理得:c2=a2+b2 - 2a?b?cosC=4+36 -c=V52=2V13.16 .已知數(shù)列an是等比數(shù)列,其前 n項(xiàng)和為Sn,滿足S2+ai=0, a3=12.(I )求數(shù)列an的通項(xiàng)公式;(n )是否存在正整數(shù)n,使得Sn>2020?若存在,求出符合條件的n的最小值;若不存在, 說明理由.【考點(diǎn)】 數(shù)列的求和;等比數(shù)列的通項(xiàng)公式.【分析】(I )通過設(shè)數(shù)列an的公比為q,利用2a+a1q=0及a1w0可知q=-2,進(jìn)而通過 a3=12可知首項(xiàng)a1=3,計(jì)算即得結(jié)論;(II )通過(I)、利用等比數(shù)列的求和公式計(jì)

22、算可知Sn>2020等價(jià)于(-2) n<- 2020,分n為奇數(shù)、偶數(shù)兩種情況討論即可.【解答】解:(I )設(shè)數(shù)列an的公比為q,因?yàn)?S2+a1=0,所以 2a1+a1q=0,因?yàn)閍 w 0,所以q= - 2,2又因?yàn)榕c二為4二12,所以a1=3,(n )結(jié)論:符合條件的 n的最小值為11. 理由如下:由(I)可知Xf _ L ?力二-<-2r門 1 * L令 Sn>2020,即 1 - (2) n>2020,整理得(2) n< - 2020, 當(dāng)n為偶數(shù)時(shí),原不等式無解;當(dāng)n為奇數(shù)時(shí),原不等式等價(jià)于2n>2020,解得n> 11;綜上所述,所

23、以滿足 Sn>2020的正整數(shù)n的最小值為11.17 .如圖,在四棱錐 P-ABCD中,PA,平面ABCD ,四邊形 ABCD為正方形,點(diǎn) M , N 分別為線段PB, PC上的點(diǎn),MN XPB.(I )求證:平面PBCL平面PAB;(II )求證:當(dāng)點(diǎn) M 不與點(diǎn)P, B重合時(shí),MN /平面ABCD ;(出)當(dāng)AB=3 , PA=4時(shí),求點(diǎn)A到直線MN距離的最小值.BC【考點(diǎn)】點(diǎn)、線、面間的距離計(jì)算;直線與平面平行的判定;平面與平面垂直的判定.【分析】(I )通過證明BCL平面PAB,即可證明平面 PBCL平面PAB;(n )在 PBC中,BCPB, MN LPB,所以MN / BC

24、,利用線面平行的判定定理,證明 MN / 平面 ABCD ;(出)AM的長(zhǎng)就是點(diǎn)A至ij MN的距離,A到直線MN距離的最小值就是 A到線段PB的 距離.【解答】 證明:(I )在正方形 ABCD中,AB ± BC.因?yàn)镻AL平面 ABCD , BC?平面 ABCD ,所以PAXBC.又 AB APA=A , AB , PA?平面 PAB ,.所以BC,平面PAB.因?yàn)锽C?平面PBC,所以平面PBC,平面PAB. ,(n )由(I )知,BCL平面 PAB, PB?平面 PAB,所以 BCXPB. .在4PBC 中,BCXPB, MN XPB,所以MN / BC,.又BC?平面 A

25、BCD , MN?平面ABCD ,.所以MN /平面 ABCD .解:(出)因?yàn)镸N / BC, 所以MN,平面PAB ,.而AM ?平面PAB,所以MN ±AM ,.所以AM的長(zhǎng)就是點(diǎn) A到MN的距離,.而點(diǎn)M在線段PB上所以A到直線MN距離的最小值就是 A到線段PB的距離,在 RtPAB 中,AB=3 , PA=4,所以A到直線MN的最小值為普.18 . 一所學(xué)校計(jì)劃舉辦 國學(xué)”系列講座.由于條件限制,按男、女生比例采取分層抽樣的方法,從某班選出10人參加活動(dòng),在活動(dòng)前,對(duì)所選的10名同學(xué)進(jìn)行了國學(xué)素養(yǎng)測(cè)試,這10名同學(xué)的性別和測(cè)試成績(jī)(百分制)的莖葉圖如圖所示.(I )根據(jù)這1

26、0名同學(xué)的測(cè)試成績(jī),分別估計(jì)該班男、女生國學(xué)素養(yǎng)測(cè)試的平均成績(jī);(n)這10名同學(xué)中男生和女生的國學(xué)素養(yǎng)測(cè)試成績(jī)的方差分別為,試比較與的大?。ㄖ恍柚苯訉懗鼋Y(jié)果)(出)若從這10名同學(xué)中隨機(jī)選取一男一女兩名同學(xué),求這兩名同學(xué)的國學(xué)素養(yǎng)測(cè)試成績(jī)均為優(yōu)良的概率.(注:成績(jī)大于等于 75分為優(yōu)良)畀女I 5 64 百8 7 670 6?K1 S【考點(diǎn)】列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率;極差、方差與標(biāo)準(zhǔn)差.【分析】(I )設(shè)這10名同學(xué)中男女生的平均成績(jī)分別為X"利用莖葉圖能求出該班男、女生國學(xué)素養(yǎng)測(cè)試的平均成績(jī).(II )女生國學(xué)素養(yǎng)測(cè)試成績(jī)的方差大于男生國學(xué)素養(yǎng)成績(jī)的方差.(出)設(shè) 兩

27、名同學(xué)的成績(jī)均為優(yōu)良”為事件A,男生按成績(jī)由低到高依次編號(hào)為a1,a2, a3,a4,女生按成績(jī)由低到高依次編號(hào)為b1, b2, b3, b4, b5, b6,由此利用列舉法能求出這兩名同學(xué)的國學(xué)素養(yǎng)測(cè)試成績(jī)均為優(yōu)良的概率.【解答】解:(I )設(shè)這10名同學(xué)中男女生的平均成績(jī)分別為了1,工則 K=-73. 75 .56H9+76+70+88+87功-百該班男、女生國學(xué)素養(yǎng)測(cè)試的平均成績(jī)分別為73.75, 76.(n)女生國學(xué)素養(yǎng)測(cè)試成績(jī)的方差大于男生國學(xué)素養(yǎng)成績(jī)的方差.(出)設(shè) 兩名同學(xué)的成績(jī)均為優(yōu)良 ”為事件A,.男生按成績(jī)由低到Wj依次編號(hào)為a1 , a2 , 33, 34,女生按成績(jī)由低

28、到高依次編號(hào)為b1, b2, b3, b4, b5, b6,則從10名學(xué)生中隨機(jī)選取一男一女兩名同學(xué)共有24種取法,如),(a2, b2),(33, b3),(31, b2),(32, b3),(33, b4),(31, b3),(32, b4),(33, b5),(31, b4),(32, b5),(33, b6),(31, b5),(32, b6),(34, b1),(31, b6),(33, b1),(34, b2),(32, b1),(33, b2),(34, b3),第13頁(共16頁)(34, b4), (34, b5),(34, b6),其中兩名同學(xué)均為優(yōu)良的取法有12種取法.(

29、32, b3),(02, b4),(32, b5),(32, M),(33, b3), (33,b4),(33, b5),(33, b6),(34, b2),(34, b3),(34, b4),(34, b5),(34,b6),所以即兩名同學(xué)成績(jī)均為優(yōu)良的概率為19.已知橢圓7=1 (a>b>0)的離心率為 學(xué),橢圓C與y軸交于A、B兩點(diǎn),| AB| =2.(I )求橢圓(n)已知點(diǎn)C的方程;P是橢圓C上的動(dòng)點(diǎn),且直線 PA, PB與直線x=4分別交于M、N兩點(diǎn),是否存在點(diǎn)P,使得以MN為直徑的圓經(jīng)過點(diǎn)(2, 0) ?若存在,求出點(diǎn) P的橫坐標(biāo);若不存在,說明理由.【考點(diǎn)】橢圓的簡(jiǎn)

30、單性質(zhì).【分析】(I )運(yùn)用橢圓的離心率公式,以及(n )設(shè) P (m, n),可得_T+n2=1,可得4t),運(yùn)用三點(diǎn)共線的條件:斜率相等,求得a, bA (0,c的關(guān)系,計(jì)算即可得到所求橢圓方程;1), B (0, 1),設(shè) M (4, s), N (4,的坐標(biāo),再由直徑所對(duì)的圓周角為直角,運(yùn)用垂直的條件:斜率之積為- 1,計(jì)算即可求得 m,檢驗(yàn)即可判斷是否存在.【解答】解:(I )由題意可得e=,2b=2,即又 a2 c2=1,解得 a=2, c=/3, 2即有橢圓的方程為2(n )設(shè) P (m,n),可得 _T_+n2=142即有 n2=1 -4由題意可得A (0, 1)A, M共線可得,B (0, T)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論