版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、12-3不等式選講根底穩(wěn)固強(qiáng)化1.(·安徽“江南十校聯(lián)考)集合mx|2x1|<2,nx|<1,那么mn等于()ax|1<x< bx|<x<1cx|<x< dx|<x<,且x1答案a解析由|2x1|<2得2<2x1<2,那么<x<;由<1得<0,即<0,那么xmnx|1<x<,選a.2(·濰坊模擬)不等式|x2|x1|>0的解集為()a(,) b(,)c(,) d(,)答案a解析原不等式等價(jià)于|x2|>|x1|,那么(x2)2>(x1)2,
2、解得x<.3設(shè)集合ax|xa|<1,xr,bx|xb|>2,xr假設(shè)ab,那么實(shí)數(shù)a、b必滿足()a|ab|3 b|ab|3c|ab|3 d|ab|3答案d解析由題意可得集合ax|a1<x<a1,集合bx|x<b2或x>b2,又因?yàn)閍b,所以有a1b2或b2a1,即ab3或ab3.因此選d.4函數(shù)y(x0)的最小值為()a6 b7c. d9答案b解析原式變形為yx21,因?yàn)閤0,所以x2>0,所以x26,所以y7,當(dāng)且僅當(dāng)x1時(shí)取等號(hào),所以ymin7(當(dāng)且僅當(dāng)x1時(shí))5(·濟(jì)南二模)對(duì)于實(shí)數(shù)x、y,假設(shè)|x1|1,|y2|1,那么|x2
3、y1|的最大值為()a5b4c8d7答案a解析由題易得,|x2y1|(x1)2(y2)2|x1|2(y2)|25,即|x2y1|的最大值為5.6(·皖南八校聯(lián)考)不等式|x3|x1|a23a對(duì)任意實(shí)數(shù)x恒成立,那么實(shí)數(shù)a的取值范圍為()a1,4 b(,25,)c2,5 d(,14,)答案a解析由絕對(duì)值的幾何意義易知:|x3|x1|的最小值為4,所以不等式|x3|x1|a23a對(duì)任意實(shí)數(shù)x恒成立,只需a23a4,解得1a4.7(·江西)在實(shí)數(shù)范圍內(nèi),不等式|2x1|2x1|6的解集為_答案x|x解析原不等式可化為或或解得x,即原不等式的解集為x|x8(·陜西)假設(shè)存
4、在實(shí)數(shù)x使|xa|x1|3成立,那么實(shí)數(shù)a的取值范圍是_答案2a4解析|xa|x1|a1|,那么只需要|a1|3,解得2a4.9假設(shè)a>0,b>0,那么p(ab),qab·ba的大小關(guān)系是_答案pq解析a>0,b>0,p(ab)>0,qab·ba>0,a·b.假設(shè)a>b,那么>1,>0,>1;假設(shè)a<b,那么0<<1,<0,>1;假設(shè)ab,那么1,0,1.1,即1.q>0,pq.點(diǎn)評(píng)可運(yùn)用特值法,令a1,b1,那么p1,q1,有pq;令a2,b4,有p83512,q24
5、×42256,p>q,故填pq.10(文)(·開封市模擬)函數(shù)f(x)|x7|x3|.(1)作出函數(shù)f(x)的圖象;(2)當(dāng)x<5時(shí),不等式|x8|xa|>2恒成立,求a的取值范圍解析(1)f(x)圖象如下圖:(2)x<5,|x8|xa|>2,即8x|xa|>2,即|xa|<6x,對(duì)x<5恒成立即x6<xa<6x對(duì)x<5恒成立,對(duì)x<5恒成立又x<5時(shí),2x6<4,4a<6.a的取值范圍為4,6)(理)(·山西大同調(diào)研)函數(shù)f(x)|x1|x3|.(1)作出函數(shù)yf(x)的圖
6、象;(2)假設(shè)對(duì)任意xr,f(x)a23a恒成立,求實(shí)數(shù)a的取值范圍解析(1)當(dāng)x1時(shí),f(x)x1x32x2;當(dāng)1<x<3時(shí),f(x)x13x4;當(dāng)x3時(shí),f(x)x1x32x2.f(x)yf(x)的圖象如下圖(2)由(1)知f(x)的最小值為4,由題意可知a23a4,即a23a40,解得1aa的取值范圍為1,4.能力拓展提升11.(·豫南九校聯(lián)考)假設(shè)a、b是正常數(shù),ab,x,y(0,),那么,當(dāng)且僅當(dāng)時(shí)上式取等號(hào)利用以上結(jié)論,可以得到函數(shù)f(x)(x(0,)的最小值為_答案25解析依據(jù)給出的結(jié)論可知f(x)25等號(hào)在,即x時(shí)成立12不等式|xlog3x|<|x
7、|log3x|的解集為_答案x|0<x<1解析由對(duì)數(shù)函數(shù)定義得x>0,又由絕對(duì)值不等式的性質(zhì)知,|xlog3x|x|log3x|,當(dāng)且僅當(dāng)x與log3x同號(hào)時(shí)等號(hào)成立,x>0,log3x>0,x>1,故原不等式的解集為x|0<x<113(·烏魯木齊地區(qū)二診)函數(shù)f(x)|x1|.(1)求不等式f(x)2的解集;(2)假設(shè)f(x)f(x)a,求a的最大值解析(1)不等式可化為:|x1|2,解得:3x1.故不等式f(x)2的解集為x|3x1;(2)f(x)f(x)當(dāng)x1時(shí),f(x)f(x)2x2,當(dāng)1<x<1時(shí),f(x)f(x)
8、2,當(dāng)x1時(shí),f(x)f(x)2x2,故f(x)f(x)2(“在1x1時(shí)成立)a2,即a的最大值為2.14(文)設(shè)a、b、c、d都是正數(shù),且x,y.求證:xy.證明(a2b2)(c2d2)(acbd)2(adbc)20,(a2b2)(c2d2)(acbd)2,又a、b、c、d均為正數(shù),·acbd>0同理·adbc>0×得:(a2b2)(c2d2)(acbd)(adbc)>0,即xy.(理)(·包頭市一模)設(shè)不等式|2x1|<1的解集是m,a、bm.(1)試比擬ab1與ab的大小;(2)設(shè)max表示數(shù)集a中的最大數(shù)hmax,求證:h
9、2.解析由|2x1|<1得1<2x1<1,解得0<x<1.所以mx|0<x<1(1)由a、bm,得0<a<1,0<b<1,所以(ab1)(ab)(a1)(b1)>0.故ab1>ab.(2)由hmax,得h,h,h,所以h3··8,故h2.15假設(shè)a>0,b>0,求證:ab.證明左邊右邊()(ab)·0,左邊右邊即原不等式成立16(·福建質(zhì)檢)a、b為正實(shí)數(shù)(1)求證:ab;(2)利用(1)的結(jié)論求函數(shù)y(0<x<1)的最小值解析(1)證法一:a>0
10、,b>0,(ab)()a2b2a2b22ab(ab)2.ab,當(dāng)且僅當(dāng)ab時(shí)等號(hào)成立證法二:(ab).又a>0,b>0,0,當(dāng)且僅當(dāng)ab時(shí)等號(hào)成立ab.(2)解:0<x<1,1x>0,由(1)的結(jié)論,函數(shù)y(1x)x1.當(dāng)且僅當(dāng)1xx即x時(shí)等號(hào)成立函數(shù)y(0<x<1)的最小值為1.1假設(shè)不等式|ax2|<4的解集為(1,3),那么實(shí)數(shù)a等于()a8b2c4 d2答案d解析由4<ax2<4,得6<ax<2.(ax2)(ax6)<0,其解集為(1,3),a2.點(diǎn)評(píng)可用方程的根與不等式解集的關(guān)系求解2(·山
11、東理,4)不等式|x5|x3|10的解集是()a5,7 b4,6c(,57,) d(,46,)答案d解析當(dāng)x3時(shí),|x5|x3|5xx322x10,即x4,x4.當(dāng)3<x<5時(shí),|x5|x3|5xx3810,不成立,無(wú)解當(dāng)x5時(shí),|x5|x3|x5x32x210,即x6,x6.綜上可知,不等式的解集為(,46,),應(yīng)選d.點(diǎn)評(píng)可用特值檢驗(yàn)法,首先x0不是不等式的解,排除a、b;x6是不等式的解,排除c,應(yīng)選d.3設(shè)a、b、c為正數(shù),且a2b3c13,那么的最大值為()a. b. c. d.答案c解析(a2b3c)()212()2()2,a2b2c13,()2,當(dāng)且僅當(dāng)取等號(hào),又a2
12、b3c13,a9,b,c時(shí),取最大值.4設(shè)a、b、cr,且a22b23c26,那么abc的最小值為()a. b c3 d11答案b解析(abc)2(a×1b·c·)2(a22b23c2)11,abc等號(hào)成立時(shí),即a2b3c,或 .5(·陜西文,15)假設(shè)不等式|x1|x2|a對(duì)任意xr恒成立,那么a的取值范圍是_答案(,3分析欲使af(x)恒成立,應(yīng)有af(x)的最小值解析令y|x1|x2|,由絕對(duì)值不等式|a|b|ab|a|b|知y|x1|x2|x1|2x|x12x|3.所以a3.6x、y、zr,x2y2z21,那么x2y2z的最大值為_答案3解析由柯
13、西不等式,x2y2z3,等號(hào)在,即x,yz時(shí)成立7a、br,且ab1,那么的最大值是_答案2解析a、br,ab1,2.當(dāng)且僅當(dāng)ab時(shí)取等號(hào)8設(shè)a、b為非負(fù)實(shí)數(shù),求證:a3b3(a2b2)解析a、b是非負(fù)實(shí)數(shù),a3b3(a2b2)a2()b2()()()5()5)當(dāng)ab時(shí),從而()5()5,()()5()5)0;當(dāng)a<b時(shí),<,從而()5<()5,()()5()5)>0.a3b3(a2b2)9設(shè)a、b、c都是正數(shù),求證:abc.分析三個(gè)正數(shù)a、b、c可排序,不妨設(shè)abc>0,那么0<,abacbc,再由排序原理證之證明不妨設(shè)abc>0,abacbc,.由排序原理,知ab×ac×bc×ab×ac×bc×,即abc.10(·忻州市高三聯(lián)考)(1)解關(guān)于x的不等式x|x1|3;(2)假設(shè)關(guān)于x的不等式x|x1|a有解,求實(shí)數(shù)a的取值范圍解析設(shè)f(x)x|x1|,那么f(x)(1)當(dāng)x1時(shí),2x13,1x2,又x<1時(shí),不等式顯然成立,原不等式的解集為x|x2(2)由于x1時(shí),函數(shù)y2x1是增函數(shù),其最小值為f(1)1;當(dāng)x<1時(shí),f(x)1,f(x)的最小值為1.因?yàn)閤|x1|a有解,即f(x)a有解,所以a1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東外語(yǔ)外貿(mào)大學(xué)南國(guó)商學(xué)院《建筑工程事故分析與加固》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東省外語(yǔ)藝術(shù)職業(yè)學(xué)院《電力系統(tǒng)保護(hù)與控制》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024-2025學(xué)年北京延慶區(qū)八年級(jí)初二(上)期末語(yǔ)文試卷(含答案)
- 廣東茂名健康職業(yè)學(xué)院《教師書寫》2023-2024學(xué)年第一學(xué)期期末試卷
- 三年級(jí)數(shù)學(xué)計(jì)算題專項(xiàng)練習(xí)匯編及答案
- 小學(xué)二年級(jí)家長(zhǎng)會(huì)教師發(fā)言稿范文五篇
- 【學(xué)練考】2021-2022學(xué)年高一人教版物理必修2練習(xí)冊(cè):模塊終結(jié)測(cè)評(píng)-
- 2025年人教版八年級(jí)數(shù)學(xué)寒假?gòu)?fù)習(xí) 專題01 三角形(13個(gè)知識(shí)點(diǎn)回顧+9大題型歸納+過(guò)關(guān)檢測(cè))
- 【走向高考】2021高考政治二輪專題復(fù)習(xí)限時(shí)訓(xùn)練:專題十-哲學(xué)思想與唯物論、認(rèn)識(shí)論
- 【同步參考】2020高中語(yǔ)文人教版必修三配套練習(xí):第4單元-單元檢測(cè)
- (高清版)JTGT 3650-01-2022 公路橋梁施工監(jiān)控技術(shù)規(guī)程
- 《尾礦庫(kù)安全監(jiān)測(cè)技術(shù)規(guī)范》
- 人工智能基礎(chǔ)與應(yīng)用(第2版)全套教學(xué)課件
- 數(shù)據(jù)資產(chǎn)入表理論與實(shí)踐
- 《建筑施工安全檢查標(biāo)準(zhǔn)》JGJ59-20248
- 2024家庭戶用光伏發(fā)電系統(tǒng)運(yùn)行和維護(hù)規(guī)范
- 江蘇省鎮(zhèn)江市2023-2024學(xué)年高一上學(xué)期期末考試化學(xué)試題(解析版)
- 磁共振技術(shù)在食品加工中的應(yīng)用
- 現(xiàn)場(chǎng)材料員述職報(bào)告
- 國(guó)家應(yīng)急救援員(五級(jí))理論考核試題及答案
- 材料測(cè)試方法智慧樹知到期末考試答案2024年
評(píng)論
0/150
提交評(píng)論