版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、南京市2016屆高三年級第三次模擬考試數(shù)學參考答案及評分標準說明:1本解答給出的解法供參考如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分標準制訂相應的評分細則2對計算題,當考生的解答在某一步出現(xiàn)錯誤時,如果后續(xù)部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定給分,但不得超過該部分正確解答應得分數(shù)的一半;如果后續(xù)部分的解答有較嚴重的錯誤,就不再給分3解答右端所注分數(shù),表示考生正確做到這一步應得的累加分數(shù)4只給整數(shù)分數(shù),填空題不給中間分數(shù)一、填空題(本大題共14小題,每小題5分,計70分. 不需寫出解答過程,請把答案寫在答題紙的指定位置上)15 23i 30.02 4 58 67
2、4 8 94 101,3 11 123 13(1,2) 14 二、解答題(本大題共6小題,計90分.解答應寫出必要的文字說明,證明過程或演算步驟,請把答案寫在答題紙的指定區(qū)域內(nèi))15(本小題滿分14分)解:(1)因為m·n3bcosB,所以acosCccosA3bcosB由正弦定理,得sinAcosCsinCcosA3sinBcosB,·····················
3、······································3分所以sin(AC)3sinBcosB,所以sinB3sinBcosB因為B是ABC的內(nèi)角,所以sinB0,所以cosB··
4、;··················································
5、;7分(2)因為a,b,c成等比數(shù)列,所以b2ac由正弦定理,得sin2BsinA·sinC ·········································
6、183;·····································9分因為cosB,B是ABC的內(nèi)角,所以sinB········
7、183;·············································11分又···
8、3;·················································
9、3;···········14分16(本小題滿分14分)證明:(1)因為ABAC,點D為BC中點,所以ADBC ·······························
10、83;·················2分 因為ABCA1B1C1 是直三棱柱,所以BB1平面ABC 因為ADÌ平面ABC,所以BB1AD ·······················&
11、#183;···························4分 因為BCBB1B,BCÌ平面BCC1B1,BB1Ì平面BCC1B1, 所以AD平面BCC1B1 因為ADÌ平面ADC1,所以平面ADC1平面BCC1B1 ······
12、183;······································6分(2)連結A1C,交AC1于O,連結OD,所以O為AC1中點 ······
13、;·······································8分因為A1B平面ADC1,A1BÌ平面A1BC,平面ADC1平面A1BCOD,所以A1BOD ··
14、················································12分因為O為AC1中點
15、,所以D為BC中點,所以1 ···············································
16、3;··················14分17(本小題滿分14分)解:(1)由題意,得,1,解得a26,b23所以橢圓的方程為1 ························
17、;··········································2分(2)解法一 橢圓C的右焦點F(,0)設切線方程為yk(x),即kxyk0,所以,解得k&
18、#177;,所以切線方程為y±(x)······························4分由方程組解得或 所以點P,Q的坐標分別為(,),(,),所以PQ ··········
19、183;······················6分因為O到直線PQ的距離為,所以OPQ的面積為 因為橢圓的對稱性,當切線方程為y(x)時,OPQ的面積也為綜上所述,OPQ的面積為 ················&
20、#183;················8分解法二 橢圓C的右焦點F(,0)設切線方程為yk(x),即kxyk0,所以,解得k±,所以切線方程為y±(x)······················
21、·········4分把切線方程 y(x)代入橢圓C的方程,消去y得5x28x60設P(x1,y1) ,Q(x2,y2),則有x1x2 由橢圓定義可得,PQPFFQ2ae( x1x2)2××·····················6分因為O到直線PQ的距離為,所以OPQ的面積為
22、 因為橢圓的對稱性,當切線方程為y(x)時,所以OPQ的面積為綜上所述,OPQ的面積為 ·································8分解法一:(i)若直線PQ的斜率不存在,則直線PQ的方程為x或x當x時,P (,),Q(,)因為·0,所
23、以OPOQ當x時,同理可得OPOQ ·································10分(ii) 若直線PQ的斜率存在,設直線PQ的方程為ykxm,即kxym0因為直線與圓相切,所以,即m22k22將直線PQ方程代入橢圓方程,得(12k2) x24k
24、mx2m260.設P(x1,y1) ,Q(x2,y2),則有x1x2,x1x2·································12分因為·x1x2y1y2x1x2(kx1m)(kx2m)(1k2)x1x2km(x1x2)m2(1k2)
25、5;km×()m2將m22k22代入上式可得·0,所以OPOQ綜上所述,OPOQ ·····································14分解法二:設切點T(x0,y0),則其切線方程為x
26、0xy0y20,且xy2 (i)當y00時,則直線PQ的直線方程為x或x當x時,P (,),Q(,)因為·0,所以OPOQ當x時,同理可得OPOQ ··································10分(ii) 當y00時,由方程
27、組消去y得(2xy)x28x0x86y0設P(x1,y1) ,Q(x2,y2),則有x1x2,x1x2 ······························12分所以·x1x2y1y2x1x2因為xy2,代入上式可得·0,所以OPOQ綜上所述,OPOQ ·
28、83;···································14分18(本小題滿分16分)解:(1)由題意,可得AD12千米 由題可知|, ········
29、;······································2分解得v ···········
30、;···································4分(2) 解法一:經(jīng)過t小時,甲、乙之間的距離的平方為f(t)由于先乙到達D地,故2,即v8 ·······
31、;·········································6分當0vt5,即0t時,f(t)(6t)2(vt)22×6t×vt×cos
32、DAB(v2v36) t2因為v2v360,所以當t時,f(t)取最大值,所以(v2v36)×()225,解得v ·······································
33、3;·9分當5vt13,即t時,f(t)(vt16t)29(v6) 2 (t)29因為v8,所以,(v6) 20,所以當t時,f(t)取最大值,所以(v6) 2 ()2925,解得v ··································
34、;······13分當13vt16, t時,f(t)(126t)2(16vt)2,因為126t0,16vt0,所以當f(t)在(,)遞減,所以當t時,f(t)取最大值,(126×)2(16v×)225,解得v 因為v8,所以 8v ························
35、·····················16分解法二:設經(jīng)過t小時,甲、乙之間的距離的平方為f(t)由于先乙到達D地,故2,即v8 ·····················
36、183;···························6分以A點為原點,AD為x軸建立直角坐標系, 當0vt5時,f(t)(vt6t)2(vt)2由于(vt6t)2(vt)225,所以(v6)2(v)2對任意0t都成立,所以(v6)2(v)2v2,解得v ·····
37、83;·········································9分當5vt13時,f(t)(vt16t)232由于(vt16t)23225,所以4vt16t4對任意
38、t都成立,即對任意t都成立,所以解得v ··············································
39、3;13分當13vt16即t,此時f (t)(126t)2(16vt)2由及知:8v,于是0126t12124,又因為016vt3,所以f (t)(126t)2(16vt)2423225恒成立綜上可知8v ·································
40、;············16分19(本小題滿分16分)解:(1)當m1時,f(x)x3x21f (x)3x22xx(3x2)由f (x)0,解得x0或x所以函數(shù)f(x)的減區(qū)間是(,0)和(,) ·······················
41、83;··············2分(2)依題意m0因為f(x)x3mx2m,所以f (x)3x22mxx(3x2m)由f (x)0,得x或x0 當0x時,f (x)0,所以f(x)在(0,)上為增函數(shù);當xm時,f (x)0,所以f(x)在(,m)上為減函數(shù);所以,f(x)極大值f()m3m ·············
42、83;···································4分當m3mm,即m,ymaxm3m···········
43、83;···································6分當m3mm,即0m時,ymaxm綜上,ymax ··········&
44、#183;·······································8分(3)設兩切點的橫坐標分別是x1,x2則函數(shù)f(x)在這兩點的切線的方程分別為y(x13mx12m)(3x122mx1
45、)(xx1),y(x23mx22m)(3x222mx2)(xx2) ···········································10分將(2,t
46、)代入兩條切線方程,得t(x13mx12m)(3x122mx1)(2x1),t(x23mx22m)(3x222mx2)(2x2)因為函數(shù)f(x)圖象上有且僅有兩個不同的切點,所以方程t(x3mx2m)(3x22mx)(2x)有且僅有不相等的兩個實根···········12分整理得t2x3(6m)x24mxm設h(x)2x3(6m)x24mxm,h (x)6x22(6m)x4m2(3xm)(x2)當m6時,h (x)6(x2)20,所以h(x)單調(diào)遞增,顯然不成立當m6時, h (x)
47、0,解得x2或x列表可判斷單調(diào)性,可得當x2或x,h(x)取得極值分別為h(2)3m8,或h()m3m2m 要使得關于x的方程t2x3(6m)x24mxm有且僅有兩個不相等的實根,則t3m8,或tm3m2m ·······························14分因為t0,所以
48、3m80,(*),或m3m2m0(*)解(*),得m,解(*),得m93或m93因為m0,所以m的范圍為(0,93,) ··································16分20(本小題滿分16分)解:(1)因為3b1,2b2,b3成等差數(shù)
49、列, 所以4b23b1b3,即4×3(2ad), 解得, ····································4分 由an1bnan2,得anda(n1)d,整理得 ···
50、3;····································6分解得n, ············
51、83;···························8分由于1且0 因此存在唯一的正整數(shù)n,使得an1bnan2 ·················
52、183;·······················10分(2)因為,所以 設f(n),n2,nN*則f(n1)f(n),因為q2,n2,所以(q1)n22(q2)n3n2310,所以f(n1)f(n)0,即f(n1)f(n),即f(n)單調(diào)遞增··········&
53、#183;·······················12分所以當r2時,tr2,則f(t)f(r),即,這與互相矛盾所以r1,即 ···················
54、3;···············14分若t3,則f(t)f(3) ·,即,與相矛盾于是t2,所以,即3q25q50又q2,所以q ·························
55、3;·················16分南京市2016屆高三年級第三次模擬考試 數(shù)學附加題參考答案及評分標準 2016.05 說明:1本解答給出的解法供參考如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分標準制訂相應的評分細則2對計算題,當考生的解答在某一步出現(xiàn)錯誤時,如果后續(xù)部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定給分,但不得超過該部分正確解答應得分數(shù)的一半;如果后續(xù)部分的解答有較嚴重的錯誤,就不
56、再給分3解答右端所注分數(shù),表示考生正確做到這一步應得的累加分數(shù)4只給整數(shù)分數(shù),填空題不給中間分數(shù)21【選做題】在A、B、C、D四小題中只能選做2題,每小題10分,共計20分請在答卷卡指定區(qū)域內(nèi)作答解答應寫出文字說明、證明過程或演算步驟A選修41:幾何證明選講證明:(1)連接AB因為PA是半圓O的切線,所以PACABC因為BC是圓O的直徑,所以ABAC又因為AHBC,所以CAHABC,所以PACCAH,所以AC是PAH的平分線 ··············&
57、#183;····························5分(2)因為H是OC中點,半圓O的半徑為2,所以BH3,CH1又因為AHBC,所以AH2BH·HC3,所以AH在RtAHC中,AH,CH1,所以CAH30°由(1)可得PAH2CAH60°,所以PA2由PA是半圓O的切線,
58、所以PA2PC·PB,所以PC·(PCBC)(2)212,所以PC2 ··········································
59、83;10分B選修42:矩陣與變換解:設曲線C上的任意一點P(x,y),P在矩陣A對應的變換下得到點Q(x,y)則 , 即x2yx,xy,所以xy,y ·····································
60、183;··········5分代入x22xy2y21,得y22y·2()21,即x2y22,所以曲線C1的方程為x2y22 ······························
61、183;············10分C選修44:坐標系與參數(shù)方程解:M的極坐標為(1,),故直角坐標為M(0,1),且P(2cos,sin),所以PM,sin1,1 ·················5分當sin時,PMmax,此時cos±所以,PM的最大值是,此時點P的坐標是(±,)&
62、#183;······························10分D選修45:不等式選講 解:函數(shù)定義域為0,4,且f(x)0 由柯西不等式得52()2()()(5··)2,········
63、··············5分 即27×4(5··)2,所以56 當且僅當5,即x時,取等號所以,函數(shù)f(x)5的最大值為6 ··································10分【必做題】第22題、第23題,每題10分,共計20分 22(本小題滿分10分)解:(1)記“X是奇數(shù)”為事件A,能組成的三位數(shù)的個數(shù)是48 ········
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 贛南科技學院《計算機網(wǎng)絡安全》2023-2024學年第一學期期末試卷
- 2022年三年級下冊小學生期末評語(17篇)
- 七年級語文上冊第四單元寫作思路要清晰新人教版
- 三年級數(shù)學上冊一混合運算過河說課稿北師大版
- 三年級科學下冊第一單元植物的生長變化第3課我們先看到了根教學材料教科版
- 小學生宿舍內(nèi)務管理制度
- 死因制度培訓課件
- 2021年衛(wèi)生招聘(公共衛(wèi)生管理)考試題庫(帶答案)
- 醫(yī)生輸血培訓課件
- 同軸電纜接頭制作(最終版)
- 供應鏈組織管理智慧樹知到期末考試答案章節(jié)答案2024年山東大學
- 家庭教育組織架構設計(3篇模板)
- JT-T-999-2015城市公共汽電車應急處置基本操作規(guī)程
- 2021年安全工程師《建筑施工安全》真題及答案解析
- 2024時事政治考試題庫附參考答案(黃金題型)
- 中華人民共和國勞動合同法全文下載
- 產(chǎn)品銷售合同的簽署方式
- 2024年新“國九條”及配套政策要點解讀分析報告
- 2024-2029年中國大健康行業(yè)市場發(fā)展現(xiàn)狀分析及發(fā)展趨勢與投資戰(zhàn)略規(guī)劃報告
- 超星爾雅學習通《藝術哲學美是如何誕生的(同濟大學)》2024章節(jié)測試答案
- 全國醫(yī)院數(shù)量統(tǒng)計
評論
0/150
提交評論