讓學(xué)生成為“演員”_第1頁
讓學(xué)生成為“演員”_第2頁
讓學(xué)生成為“演員”_第3頁
讓學(xué)生成為“演員”_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、讓學(xué)生成為“演員”也談排列組合的解題策略蘇州市相城區(qū)黃埭中學(xué) 張兵 排列組合作為高中代數(shù)課本的一個獨立分支,因為極具抽象性而成為“教”與“學(xué)”難點。有相當(dāng)一部分題目教者很難用比較清晰簡潔的語言講給學(xué)生聽,有的即使教者覺得講清楚了,但是由于學(xué)生的認(rèn)知水平,思維能力在一定程度上受到限制,還不太適應(yīng)。從而導(dǎo)致學(xué)生對題目一知半解,甚至覺得“云里霧里”。針對這一現(xiàn)象,筆者在日常教學(xué)過程中經(jīng)過嘗試總結(jié)出一些個人的想法跟各位同行交流一下。 筆者認(rèn)為之所以學(xué)生“怕”學(xué)排列組合,主要還是因為排列組合的抽象性,那么解決問題的關(guān)鍵就是將抽象問題具體化,我們不妨將原題進行一下轉(zhuǎn)換,讓學(xué)生走進題目當(dāng)中,成為“演員”,成

2、為解決問題的決策者。這樣做不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,活躍了課堂氣氛,還充分發(fā)揮學(xué)生的主體意識和主觀能動性,能讓學(xué)生從具體問題的分析過程中得到啟發(fā),逐步適應(yīng)排列組合題的解題規(guī)律,從而做到以不變應(yīng)萬變。當(dāng)然,在具體的教學(xué)過程中一定要注意題目轉(zhuǎn)換的等價性,可操作性。 下面筆者將就教學(xué)過程中的兩個難點通過兩個特例作進一步的說明:1、 占位子問題 例1:將編號為1、2、3、4、5的5個小球放進編號為1、2、3、4、5的5個盒子中,要求只有兩個小球與其所在的盒子編號相同,問有多少種不同的方法? 仔細審題:在轉(zhuǎn)換題目之前先讓學(xué)生仔細審題,從特殊字眼小球和盒子都已“編號”著手,清楚這是一個“排列問題”,然后對

3、題目進行等價轉(zhuǎn)換。 轉(zhuǎn)換題目:在審題的基礎(chǔ)上,為了激發(fā)學(xué)生興趣進入角色,我將題目轉(zhuǎn)換為: 讓學(xué)號為1、2、3、4、5的學(xué)生坐到編號為1、2、3、4、5的五張凳子上(已準(zhǔn)備好放在講臺前),要求只有兩個學(xué)生與其所坐的凳子編號相同,問有多少種不同的坐法? 解決問題:這時我在選另一名學(xué)生來安排這5位學(xué)生坐位子(學(xué)生爭著上臺,積極性已經(jīng)得到了極大的提高),班上其他同學(xué)也都積極思考(充分發(fā)揮了學(xué)生的主體地位和主觀能動性),努力地“出謀劃策”,不到兩分鐘的時間,同學(xué)們有了統(tǒng)一的看法:先選定符合題目特殊條件“兩個學(xué)生與其所坐的凳子編號相同”的兩位同學(xué),有C種方法,讓他們坐到與自己編號相同的凳子上,然后剩下的三

4、位同學(xué)不坐編號相同的凳子有2種排法,最后根據(jù)乘法原理得到結(jié)果為2×C=20(種)。這樣原題也就得到了解決。 學(xué)生小結(jié):接著我讓學(xué)生之間互相討論,根據(jù)自己的分析方法對這一類問題提出一個好的解決方案。(課堂氣氛又一次活躍起來) 老師總結(jié):對于這一類占位子問題,關(guān)鍵是抓住題目中的特殊條件,先從特殊對象或者特殊位子入手,再考慮一般對象,從而最終解決問題。2、分組問題 例2:從1、3、5、7、9和2、4、6、8兩組數(shù)中分別選出3個和2個數(shù)組成五位數(shù),問這樣的五位數(shù)有幾個? (本題我是先讓學(xué)生計算,有很多同學(xué)得出的結(jié)論是P×P) 仔細審題:先由學(xué)生審題,明確組成五位數(shù)是一個排列問題,但

5、是由于這五個數(shù)來自兩個不同的組,因此是一個“分組排列問題”,然后對題目進行等價轉(zhuǎn)換。 轉(zhuǎn)換題目:在學(xué)生充分審題后,我讓學(xué)生自己對題目進行等價轉(zhuǎn)換,有一位同學(xué)將題目轉(zhuǎn)換如下: 從班級的第一組(12人)和第二組(10人)中分別選3位和2位同學(xué)分別去參加蘇州市舉辦的語文、數(shù)學(xué)、英語、物理、化學(xué)競賽,問有多少種不同的選法? 解決問題:接著我就讓同學(xué)來提出選人的方案同學(xué)說:先從第一組的12個人中選出3人參加其中的3科競賽,有P×P種選法;再從第二組的10人中選出2人參加其中2科競賽有P×P種選法;最后由乘法原理得出結(jié)論為(P×P)×(P×P)(種)。(這時同學(xué)表示反對)同學(xué)說:如果第一組的3個人先選了3門科目,那么第二組的2人就沒有選擇的余地。所以第二步應(yīng)該是P×P。(同學(xué)們都表示同意,但是同學(xué)說太蘩)同學(xué)說:可以先分別從兩組中把5個人選出來,然后將這5個人在5門學(xué)科中排列,他列出的計算式是××(種)。(再次通過互相討論,都表示贊賞)這樣原題的解答結(jié)果就“浮現(xiàn)”出來××(種)。 老師總結(jié):針對這樣的“分組排列”題,我們多采用“先選后排”的方法:先將需要排列的對象選定,再對它們進行排列。 以上是我一節(jié)課兩個例題的分析過程,旨

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論