數(shù)值分析上機(jī)實(shí)習(xí)報告_第1頁
數(shù)值分析上機(jī)實(shí)習(xí)報告_第2頁
數(shù)值分析上機(jī)實(shí)習(xí)報告_第3頁
數(shù)值分析上機(jī)實(shí)習(xí)報告_第4頁
數(shù)值分析上機(jī)實(shí)習(xí)報告_第5頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、x 4 常southwest jiaotong university教值分析上機(jī)賣習(xí)報告學(xué) 號:姓 名:專 業(yè):聯(lián)系電話:任課老師:二零一一年十二月序 言數(shù)值分析在現(xiàn)代科學(xué)發(fā)展中有著重要的作用,而隨著科學(xué)的發(fā)展進(jìn)步,越來 越多的數(shù)值分析問題不能夠光靠人力計(jì)算,這就要借助計(jì)算機(jī)進(jìn)行計(jì)算。而在利 用計(jì)算機(jī)解決實(shí)際問題時,要根據(jù)具體情況作出可靠的理論分析,才能夠?qū)懗霰?較可靠的程序?,F(xiàn)在面向數(shù)值分析問題的計(jì)算機(jī)軟件有:c、c卄、matlab、 python fortran 等。c+是筆者在本科學(xué)過的唯一一門編程語言,但是出于學(xué)習(xí)時間較短,而且 在學(xué)習(xí)時不精,再加上時間已久遠(yuǎn),對這門編程語言課程已經(jīng)兒

2、乎沒有多少印象 to python是一種而向?qū)ο蟮慕忉屝缘挠?jì)算機(jī)程序設(shè)計(jì)語言,也是一種功能強(qiáng)大 而完善的通用型語言,已經(jīng)具有十多年的發(fā)展歷史,成熟且穩(wěn)定。python具有 腳本語言中最豐富和強(qiáng)大的類庫,足以支持絕大多數(shù)日常應(yīng)用。fortran 式 翻譯器二它是世界上最早出現(xiàn)的計(jì)算機(jī)高級程序設(shè)計(jì)語言,廣泛應(yīng)用于科學(xué)和 工程計(jì)算領(lǐng)域。fortran語言以其特有的功能在數(shù)值、科學(xué)和工程計(jì)算領(lǐng)域發(fā)揮 著重要作用。matlab (矩陣實(shí)驗(yàn)室)是一個功能強(qiáng)大的軟件,是一種數(shù)值計(jì)算環(huán)境和 編程語言。在當(dāng)今世界流行的30多個數(shù)學(xué)類軟件中,matlab語言處于數(shù)值計(jì) 算型軟件的主導(dǎo)地位,適用范圍涵蓋了工程數(shù)學(xué)的

3、各個方面。它的有點(diǎn)主要有:1、matlab是以矩陣為基礎(chǔ)的工具,若是編一些對速度沒有要求的,進(jìn)行數(shù) 值計(jì)算或者信號處理的小程序,可以用matlab,且簡單。2、matlab除具備卓越的數(shù)值計(jì)算能力外,它還提供有專業(yè)水平的符號計(jì)算, 文字處理,可視化建模仿真和實(shí)時控制等功能。3、matlab的基木數(shù)據(jù)單位是矩陣,它的指令表達(dá)式與數(shù)學(xué),工程中常用的 形式分相似,所以用matlab來解算問題要比用c、fortran等語言完成相同 的事情簡捷得多。在新版本中也加入了對c、fortran. c+、java的支持,使用時可以直 接調(diào)用,也可將編寫的實(shí)用程序?qū)氲絤atlab函數(shù)庫屮方便以后使用時調(diào)用。木次

4、編程所用的軟件為matlab,希望通過這次作業(yè),能夠?qū)λ辛顺醪?的認(rèn)識,為以后的學(xué)習(xí)和工作奠定一定的基礎(chǔ)。目 錄1第一題11.1題冃11.2雅各比迭代和高斯塞德爾法迭代的思想1121雅各比算法11.2.2高斯塞德爾方法11.2.3雅各比法和高斯賽徳爾迭代法的收斂條件11.3問題的求解21.4方法總結(jié)52.第二題62.1 題 h 62.2松弛思想分析62.3問題的求解62.4方法總結(jié)133 第三題143.1 題 h 143.2 runge-kutta 法的基本思想143.3問題的求解143.4問題的總結(jié)15總結(jié)16附件17第一題:雅閣比和高斯賽徳爾迭代法17第二題:sor法19第三題:rung

5、e-kutta算法201 第一題11題目用雅格比法與高斯一賽徳爾迭代法解下列方程組血=,研究其收斂性,上 機(jī)驗(yàn)證理論分析是否e確,比較它們的收斂速度,觀察右端項(xiàng)對迭代收斂有無影 響。(1) a 行分別為:ai二6,2,-1蟲2二1,4,一2“3二一3丄4;z>i=-3,2,4jr,2=100 -200,345jr;(2) 4 行分別為:ai=1,0,8,0.842=0.8,1,0.843=0.8,0.8,1j;ft1=3,2,lr,62=5,0,-10r;(3) a 行分別為:ai=1,342=-7,1;6=4,6r;1.2雅各比迭代和高斯塞德爾法迭代的思想迭代法是將方程組4兀二轉(zhuǎn)化為x

6、=bxf,構(gòu)成了迭代格式: x(k+1) = bxk+f k = 0j,2.n反復(fù)適用該式子,產(chǎn)生了儀“的向量序列,如果這個向量序列收斂于兀*, 則有兀*是方程組的解。因此,根據(jù)精度的要求選擇一個合適的?!白鳛榻平?。 這就是線性方程組的迭代法。1.2.1雅各比算法將系數(shù)矩陣a分解為:a=£+t7+p,則推到的最后迭代公式為:x= l+ u)x(k)+d'j b其中,迭代矩陣為b尸-d1 (l+ u )1.2.2高斯塞德爾方法高斯塞徳爾方法是從雅各比演變而來的,其矩陣形式為兀曲)=兇(lx(k+j)+ ux(k)+d-jb其中,高斯塞德爾迭代矩陣bg=(d+l)1u1.2.3

7、雅各比法和高斯-賽德爾迭代法的收斂條件根據(jù)定理可知,方程組有唯一解兀*,對于任意初始向量工(0丿和常向 量f丘疋迭代格式均收斂丁k *的充要條件是"(b) < 1 o1.3問題的求解按照以上分析的思量,用matlab編寫程序,解上述3個問題。-1-2 ,民卜3,2,4卩初始46 2解:(1)在matlab中運(yùn)行程序,輸入4二14-3 1向量工二1,1,1卩。設(shè)置的求解精度為0.5x1 o'4,雅各比m語言程序x,k =jacohi(ayb )b矩陣的譜范數(shù)為:0.5427<1,所以收斂;x = -0.72730.80810.2525 t迭代次數(shù):k= 19表1雅各

8、比解的迭代過程(bj步數(shù)x.x2x3£k1-0.666666666666670.750000000000001.500000000000001.757918592477422-0.500000000000001.416666666666670.312500000000001.371997985502253-0.920138888888890.781250000000000.270833333333330.762893922734794-0.715277777777780.865451388888890.114583333333330.271057210264735-0.7693865

9、74074070.736111111111110.247178819444440.192972102204726-0.704173900462960.815936053240740.238932291666670.103405606259517-0.732156635802470.795509620949070.267885561342590.045150464429218-0.720522280092590.816981939621910.252005117910880.029130863110459-0.730326460222160.806133128978590.25536280502

10、5080.0150030897865910-0.726150575488680.810263017568080.250721872588730.0074854690532811-0.728300693757900.806898580166540.252821313991470.0045111087111712-0.726829307723600.808485830435210.252049834639940.0022977207548313-0.727486971038410.807732244250870.252756561598500.0012246943156714-0.72711798

11、7817210.808250023558850.252451710658470.0007051085908915-0.727341389409870.808005352283540.252599003247380.0003625843506216-0.727235283553280.808134848976160.252492619871710.0001983564186517-0.727296179680100.808055130824180.252539825091000.0001108677353618-0.727261739426230.808093957465520.25251408

12、2533880.0000579337415719-0.727278972066190.808072476123500.252530206063950.00003191206915高斯一塞德爾法m語言程序xyk=gau_seid(ab )b矩陣的譜范數(shù)為:0.3536<1,所以收斂;x = -0.72730.80810.2525 t迭代次數(shù):k=ll表2高斯一塞德爾法迭代過程(bj步數(shù)xix2x31-0.666666666666671.16666666666667o.2o8333333333331.852644506284642-0.854166666666670.817708333333

13、330.154947916666670.399722617718153-0.746744791666670.764160156250000.248901367187500.152427416701314-0.713236490885420.802759806315100.264382680257160.053407960649665-0.723522822062170.813072045644120.254089872042340.017835156012896-0.728675703207650.809213861823080.251189757138490.007060342268757-

14、0.727872994417950.807563127173730.252204472393110.0020973586559380.727153630325730.807890643777990.252662116311210.000913339903339-0.727186528540790.808127690290800.252578181021700.0002536108724410-0.727279533259980.808108973825850.252513106598550.0001150428807011-0.727284140175520.808077588343160.2

15、52517497782570.00003202428284用雅各比經(jīng)過19步迭代達(dá)到了預(yù)定的精度,其解為:x =-0.727, x2 =0.808, x3 =0.253譜半徑 p(b)=0.54o用高斯塞徳爾算法經(jīng)過11步迭代得到的解為:x)=-0.727, x2=0.808, x3=0.253譜半徑為p(b)=0.35o-1-24方二100 廠200.3457"6 2 在matlab屮運(yùn)行程序,輸入a= 14-3 1初始向量兀=1,1,1 f。設(shè)置的求解精度為0.5xl0-4, 雅各比m語言程序xyk =jacobi(ab )b矩陣的譜范數(shù)為:0.5427<1,所以收斂;x

16、= 36.3636-2.0707114.0404 t迭代次數(shù):k = 25表3雅各比法迭代過程(b2)步數(shù)xx2x3ek116.5000-49.7586.7500100.8408247.7083-10.7500111 .062555.5523338.7604-6.3958124.718816.8973439.58512.6693116.919311.9870 2436.3636-2.0707114.04040.0000咼斯一塞徳爾法m語百程序x,k-gau_seid(a,b)矩陣的譜范數(shù)為:0.3536<1,所以收斂;x = l 36.3636-2.0707114.0404 jt迭代次數(shù)

17、:k=16表4高斯-塞德爾法迭代過程(bj步數(shù)x)x2x3£k116.500053.62512.0312124.7080253.2135-7.2878127.982161.2328340.42633.8845115.598621.0163434.6383-0.8603112.4438& 1220 1636.3636-2.0707114.04040.000010.80.8(2) 在matlab中運(yùn)行程序,輸入心0.810.8,歸3,2,1卩初始向量0.80.91x=ll,l,lfo設(shè)置的求解精度為0.5x104,用雅各比算法,具譜半徑為: p(b)=1.6>l由此可知雅各

18、比迭代法不收斂。而高斯-塞德爾的譜半徑為p(b)=0.72由此可知,高斯-塞德爾法是收斂的。高斯塞德爾法m語言程序:xfk=gau_seid(afb)矩陣的譜范數(shù)為:0.7155<1,所以收斂;x = 5.76920.7692-4.2307 t迭代次數(shù):k = 36表5高斯-塞德爾迭代求解過程(bj步數(shù)xix2x3£k11.40000.08000.18401.551923.0832-0.3194-1.21112.011834.2243-0.4106-2.05101.419944.9693-0.3346-2.70770.9960 345.76910.7692-4.23070.00

19、0010.80.8在matlab中運(yùn)行程序,輸入a二0.810.8,6=5,0,-107初始向量0.80.91*1,1,1化設(shè)置的求解精度為0.5x10 4 高斯塞德爾法m語言程序xk=gau_seid(a9b)b矩陣的譜范數(shù)為:0.7155<1,所以收斂;x = 32.69237.6923 -42.3077 t迭代次數(shù):k = 40表6高斯-塞德爾迭代求解過程(bj步數(shù)x.x少avx3£k13.4000-3.5200-9.904012.0452215.7392-4.6682-18.856815.2881323.8200-3.9705-25.879610.7287428.880

20、1-2.4004-31.18377.4969 4032.69237.6922-42.30760.000013(3) 在matlab中運(yùn)行程序,輸入a二,bj=4; 6,初始向量-7 1*1丄1f,設(shè)置求解精度為0.5x104。解得迭代結(jié)果如下:用雅各比算法迭代得到p(b)=4.6>l,故迭代過程不收斂。用高斯-塞徳爾算法迭代得p(b)=21>l,迭代過程不收斂。1.4方法總結(jié)在用雅閣比和高斯塞德爾迭代式時,可以得出以下結(jié)論:1、從第一題可以看出,高斯塞德爾的收斂速度比雅閣比的迭代法的收斂速 度要快,其迭代的次數(shù)要少很多。2、在一個方程屮,雅閣比迭代法不收斂,并不意味著高斯塞徳爾方法

21、不收 斂,從第二小題就可以看出,他們的收斂與否相互z間沒有必然的聯(lián)系。3、從理論上來講,高斯塞德爾迭代方法比雅閣比方法要好。2.第二題2.1題目松弛因子對sor法收斂速度的影響。用sor法求解方程組ax=bm屮(3-2-411-4 1-2-21 -41、1-4丿要求程序屮不存系數(shù)炬陣a,分別對不同的階數(shù)取w=l.l, 1.2,1.9進(jìn)行迭 代,記錄近似解共)達(dá)到|?»兀(5|<10-6時所用的迭代次數(shù)k,觀察松弛因子對收 斂速度的影響,并觀察當(dāng)w<0或 咗2會有什么影響?2.2松弛思想分析sor法(松弛法),是由高斯塞德爾迭代方法演變來的。高斯塞德爾迭代 方法的迭代格式為

22、兀v 護(hù)+ ax ,而松弛法的迭代格式為£""=護(hù)+ vvax,通 過大量的實(shí)驗(yàn)發(fā)現(xiàn),q的取值很關(guān)鍵,如果取了好的迭代方程的收斂速度會 加快,根據(jù)理論基礎(chǔ)可以知道,當(dāng)0vsv2時松弛法才能夠收斂。2.3問題的求解1、當(dāng)3二1時,設(shè)階數(shù)為10,方程組的解為:x)=l.000000054 x2= 1-000000314 x3=0.9999998714 x4= 1.000000007 二0.9999999898 x6二0.9999999957 x7=0.9999999995二0.9999999996 x9=0.9999999998 x()=l迭代次數(shù)為72次。當(dāng)3 =

23、1時,設(shè)階數(shù)為100,方程組的解為:x)=1.000000021x2= 1.00000031x3= 1.000000044x4 二0.9999999973x5= 1.000000001x6= 1.0000()0002x7= 1.000000001x8=lx9 1x10=lx11 = 1x12=lx1尸1x|4= 1x5= 1x16=1x17 二 1x18= 1x19=1x20=lx21=lx22=lx23=lx24= 1x25=lx26=lx27= 1x28=lx29=lx30=lx31=lx32=lx33=lx34= 1x35二 1x36=lx37=lx38= 1x39=lx4()=lx4

24、1= 1x42二1x43tx44*" 1x45= 1也6= 1x47=lx48=l也尸1x51= 1x52=lx53=lx54= 1x55= 1x56= 1x57=lx58=lx59= 1xgf 1x61=lx62=lx63=lx64= 1x65= 1x66= 1x67= 1x68= 1x69=lx70=lx71=lx?2=lx?3=lx74hx75=lx76= 1x77hx78=lx79=lx8()=lxgl=lx82=lx83=lx84= 1x85=lx86=lx87=lx88=lx89=lx90=lx91=lx92=lx93"x94=lx95= 1x96= 1x97二

25、 1x98=lx99=lx|oo=1迭代次數(shù)為117次2、當(dāng)o = 1.2時,設(shè)階數(shù)為10,方程組的解為x3= 1.000000067x1=1.0000(x)25 3x2= 1.000000856x5= 1.0000(x)057x6= 1.0(x)(x)0025 x7= 1.000000(x)3x8= 1.000000(x)3 x9=0.9999999986 x10= 1.000000001迭代次數(shù)為101次當(dāng)3 = 1.2時,設(shè)階數(shù)為100,方程組的解為x3=lx7=6.67265c+013 xll=-5.50821e+017 xl5=-1.0397e+020 xl9=-1.71763e+0

26、21 x23=-3.16617e+021 x27=-3.16282e+020 x31=4.9245 le+018 x35=3.18307e+017 x39=6.02677e+015 x43=1.71915e+014 x47=9.69684e+012 x51=4.64463e+01lxl = l x5=l x9=-1.17797e+016 xl3=-1.06945e+019 xl7=-5.56428e+020 x21=-3.09406e+021 x25=-1.66928e+021 x29=3.35041e+019 x33=-1.8035e+018 x37=-4.48812e+016 x41=-9

27、.05275e+014 x45=-3.96858e+013 x49=2.25323e+012 x53=-7.84681e+010 x57=1.03353e+008 x61 = 1.02405e+008 x65= 154636 x69=-116771 x73=2480.13 x77=40.1718 x81=-2.8i x85=1.1263 x89=0.997404x2=lx6=1.96309c+012xl0=9.15377e+016xl4=3.60907e+019xl8=1.04565e+021 x22=3.37159e+021 x26=8.70018e+020 x30=-2.47667e+01

28、9 x34=5.53864e+016x38=2.08621e+016 x42=&20085e+014x46= 2.4197e+013x50=2.73109e+011 x54=-2.40931e+010 x58=-1.20336e+009 x62=1.20907e+007 x66=1.39775c+006 x70=-33474.4 x74=-626.075 x78=54.9869 x82=-0.539144 x86= 1.02052 x90= 1.00023x55= &8772e+009 x59=-3.64718e+008x63=-1.48447e+007 x67=489937x

29、71二力 63.35x75=-718.354x79= 18.6465x83=0.936298x87=0.988477x91=1.00053x4=lx8=1.10211e+015 xl2=2.66922e+018 xl6=2.58173e+020 x20=2.46738e+021 x24=2.52585e+021 x28=4.28076e+019 x32=2.6i277e+018 x36=-7.84707e+016 x40=-4.32756e+015 x44=-1.4677e+014 x48=-3.3509e+012 x52=3.6976e+010 x56=6.66353e+009 x60=1.

30、13069e+008 x64=-7.30784e+006 x68=-70020.5 x72=9286.62 x76=-201.634 x80=-0.460157 x84=1.23816 x88=0.99085 x92= 1.00023x93= 1.00003x94=0.99998x95=0.999986x96=0.999996x97=lx98=lx99=lxl00=l迭代次數(shù)為95次3、當(dāng)o = 1.3時,設(shè)階數(shù)為10,方程組的解為x 1 =0.9999997193x2=0.9999995126x3=l.000000074x4=0.9999995126x5=0.999999827x6= 1.0

31、00000036x7=0.9999999761x8=0.9999999584x9= 1.000000014x 10=0.9999999892迭代次數(shù)為133次當(dāng)加速因子為:1.3當(dāng)0 = 1.3時,設(shè)階數(shù)為100,方程組的解為x2= 1.00000059x6= 1.00000001 xl0=lxl= 1.00000006x5=0.999999989x9=0999999996x3= 1.00000012x7=0.999999984x 11=0.999999999 x4=0.99999993 1x8=0.999999983x 12=0.999999999xl3=l xl4=i xl5=lx20=l

32、x21 = ix22=lx30=lx23=ix24=lx31=lx32=lx33=lx34=lx40=lx41 = lx42=lx43=lx44=lx50=lx51=lx52=lx53=lx54=lx60=lx61 = lx62=lx63=lx64= 1x70=lx71 = lx72=lx73=lx74=lx80=lx81 = lx82=lx83=lx84=lx90=lx91=lx92=lx93=lx94=lxl00=ixl6=lxl7=lxl8=lxl9=lx25=lx26=ix27=lx28=lx29=ix35=lx36=lx37=lx38=lx39=lx45=lx46=lx47=lx48

33、=lx49=lx55=lx56=lx57=lx58=lx59=lx65=lx66=lx67=lx68= 1x69= 1x75=lx76=lx77=lx78=lx79=lx85=lx86=lx87=lx88=lx89=lx95=lx96=lx97=lx98=lx99=l迭代次數(shù)為178次4、當(dāng)co=l4時,設(shè)階數(shù)為10方程組的解為:xl= 1.00000323x5= 1.00001324x9= 1.00000032x2= 1.00001382x3= 1.00001102x6=0.999996457x7= 1.00000436x 10=0.999999973x4=0.999997945x8= 1.

34、00000219迭代次數(shù)為170次當(dāng)co=1.4時,設(shè)階數(shù)為100方程組的解為:x 1 =0.999999836x2=0.999999524x3二0.999999643x4=0.999999991x5= 1.00000009x6= 1.00000002x7= 1x8= 1.00000002x9= 1.00000002xl0=lx 11=0.999999994x 12=0.999999996x 13=0.999999999x 14=0.999999999 x15=0.999999999xl6=lxl7=lxl8=lxl9=lx20=lx21 = l x22=lx23=lx24=lx25=lx26

35、=lx27=lx28=lx29=ix30=lx31=lx32=lx33=lx34=lx35=lx36=lx37=ix38=lx39=lx40=lx41=lx42=lx43=lx44=lx45=lx46=lx47=lx48=lx49=lx50=lx51=lx52=lx53=lx54=lx55=lx56=lx57=lx58=lx59=lx60=lx61=lx62=lx63=lx64=lx65=lx66=lx67=lx68=lx69=lx70=lx71 = lx72=lx73=lx74=lx75=lx76=lx77=lx78=lx79=lx80=lx81 = lx82=lx83=lx84=lx85=

36、lx86=lx87=lx88=lx89=lx90=lx91=lx92=lx93=lx94=lx95=lx96=lx97=lx98=lx99=lxloo=l迭代次數(shù)為218次(5)當(dāng) cd=1 .5 時,設(shè)階數(shù)為10,方程組的解為:x 1=0.999999985x5=0.999999951x9=lx2=0.999999695x6=0.999999945x 10=0.999999996x3= 0.99999989x7=0.999999967x4=0.999999847x8=0.999999974迭代次數(shù)為231次當(dāng)co=l5時,設(shè)階數(shù)為100,方程組的解為:x 1=0.999999566x2=0.

37、999998608x5= 1.00000064x6= 1.000(x)034x9= 1.00000003x 10=0.999999987x 13=(). 999999994xl4= l.(x)(x)()0()2x!7=lxl8=lx21=0.999999997x22=0.999999999x23=lx24=lx25=lx26=lx27=lx30=lx31 = l x32=lx33=lx34=lx35=lx40=lx41=lx42=lx43=lx44=lx45=lx50=lx51 = l x52=lx53=ix54=lx55=lx60=lx61=ix62=lx63=lx64=lx65=lx70=

38、lx28=lx29=lx3=0.999998914x4= 1.00000013x7= 1.00000002x8=0.999999988xl 1=0.999999931x 12=0.999999944xl5= 1.0000(x)01xl6=lx!9=lx20=0.999999998x36=lx37=lx38=lx39=lx46=lx47=lx48=lx49=lx56=ix57=lx58=lx59=lx66=lx67=lx68=lx69=lx7l = lx72=lx80=lx73=lx74=lx75=lx76=lx77=lx78=lx79=lx81=lx82=lx83=lx84=lx85=lx86

39、=lx87=lx88=lx89=lx90=lx91 = lx92=lx93=lx94=lx95=lx96=lx97=lx98=lx99=lxl00=l迭代次數(shù)為270次(6)當(dāng)(0=1.6 時,設(shè)階數(shù)為10,方程組的解為:xi = 1.00000013x5=0.999999764 x9=0.999999933 迭代次數(shù)為311次x2=0.9999996x6= 1.00000001x1o= 1.00000001x3=0.999999814x7=0.999999887x4=0.999999956x8=0.999999973當(dāng)co=1.6時,設(shè)階數(shù)為100,方程組的解為:xl= 1.00000015

40、x2=0.999999473x3=0.999999923x4=0.999999452x5=0.999999889x6= 0.99999968x7=0.999999828x8=0.999999922x9=0.999999849x 10=0.999999962x 11=0.999999924x 12=0.999999949xl3= 0.99999998x 14=0.999999958x 15=0.999999984x 16=0.999999986x 17=0.999999985x 18=0.999999998x 19=0.999999993x20=0.999999995x21=0.99999999

41、9x22=0.999999996x23=0.999999999x24=0.999999999x25=0.999999999x26=lx27=lx28=lx29=lx30=lx31 = l x32=lx40=ix33=ix34=lx35=lx36=lx37=lx38=lx39=lx41=lx42=lx43=lx44=lx45=lx46=lx47=lx48=lx49=lx50=lx51=lx52=lx53=lx54=lx55=lx56=lx57=ix58=lx59=lx60=lx61 = lx62=lx63=lx64=lx65=lx66=lx67=lx68=lx69=lx70=lx71=lx72=

42、lx73=lx74=lx75=lx76=lx77=lx78=lx79=lx80=lx81=lx82=lx83=lx84=lx85=lx86=lx87=lx88=lx89=lx90=lx91 = lx92=lx93=lx94=lx95=lx96=lx97=lx98=lx99=lxl00=l迭代次數(shù)為354次(7)當(dāng)3=1.7時,設(shè)階數(shù)為10,方程組的解為:x3=0.999999586x7= 1.00000002x4= 1.00000099x8= 1.00000031xl = lx2=1.00000139x5=1.00000022x6=1.00000056x9= 1.00000006 x!0= 1

43、.0000001迭代次數(shù)為441次當(dāng)(d=1.7時,設(shè)階數(shù)為100,方程組的解為:xl= 1.00000006x2= 1.00000077x3= 1.00000014x4=0.999999879x5= 1.00000007x6=0.999999843x7=0.999999628x8=0.999999883x9= 1.00000005x 10=0.999999941xl 1=0.999999951x 12= 1.00000007x!3= 1.00000005x!4= 1.00000001x 15= 1.00000005x 16= 1.00000005x!7=lx 18=0.999999986x!

44、9=lx20=0.999999991x21=0.99999997x22=0.999999983x23=lx24=0.999999998x25=0.999999999x26= 1.00000001x27= 1.00000001x28=lx29=lx30=lx31 = lx32 二0.999999999x33=0.999999999x34=lx35=0.999999999x36=0.999999998x37=0.999999999x38=lx39=lx40=lx41=lx42=lx43=lx44=0.999999999x45=lx46=0.999999999x47=lx48=0.999999999

45、x49=lx50=0.999999999x51 = lx52=lx53=lx54=lx55=lx56=lx57=lx58=lx59=lx60=lx61 = lx62= 1x63=lx64=lx65=lx66=1x67=1x68=1x69=1x70=lx71 = lx72=lx73=lx74=lx75=lx76=lx77=lx78=lx79=lx80=lx81=lx82=lx83=lx84=lx85=lx86=ix87=lx88=lx89=ix90=lx91 = lx92=lx93=lx94=lx95=lx96=1x97=1x98=lx99=lxl00=l迭代次數(shù)為482次(8)當(dāng)(0=1.8時

46、,設(shè)階數(shù)為10,方程紐的解為:x 1 =4.35735725e+013 x2=3.2400734e+013 x3=4.0132189e+013 x4=1.09454667e+013 x5=4.94478e+013x6=2.63808027e+013 x7=4力63996e+013 x8二2.00831054e+013x9=3.05324259c+013 xl 0=2.20962274c+013迭代次數(shù)為500次當(dāng)3=1.8時,設(shè)階數(shù)為100,方程組的解為:xl=5.96013446e+016x4=-4.93877921e+015x7=-2.23492518e+016xl0=1.96133857

47、e+016xl3=-1.9430906e+016xl6=-1.78901526e+016x 19=6.21043604e+015x22=1.09572238e+016x25=6.21908636e+015x28=-9.19644718e+015x31 =2.05950415e+014x2=-8.350i7153e+016x5=1.8045084e+015x8=4.59908708e+016xll=5.30890667e+016xl4=-1.7620796e+016xl7=-2.83175036e+016x20=-2.4022951e+015x23=8.39301526e+015x26=6.93

48、985006e+015x29=-1.45210279e+015x32=-9.06634008e+015x3=-1.26868909e+017 x6=-6.89903944e+016x9=2.62247449e+016 xl2=3.17846147e+016 xl 5=6.4211826e+013 xl8=-6.13087939e+015 x21=3.70088308e+014 x24=5.75864622e+014 x27=7.41331427e+014 x30=-6.09056721e+015 x33=8.53822647e+015x34=-6.37955468e+015 x37=1.456

49、47075c+016 x40=-1.14971412e+016 x43=4.88222785e+015 x46=-5.0110037e+014 x49=-1.34733888e+015 x52=4.10258958e+014 x55=6.10242549e+014 x58=5.20096325e+013 x61=-2.62454351e+014 x64=-1.127053 8e+014 x67=-3.14144029e+013 x70=-1.79417497e+012 x73=4.37247149e+013 x76=3.9420982e+013 x79=2.70735247e+013 x82=

50、2.63742845c+013 x85=3.88570916e+011 x88=-1.41652426e+013 x91 =-7.30740135e+012 x94=-1.14575502e+012 x97=5.65878449e+010 xl00=-1.04086008e+012 迭代次數(shù)為500次(9)當(dāng)(0=1.9 時, xl=2.70017718e+039 x4=l.22447873e+039 x5=l.4009503 le+039 x8=-5.92365593e+037 x9=4.66598312e+038 迭代次數(shù)為500次x35=l.o66699o7e+oi6x38=-1.109687 lc+016x41=1.08729542e+016x44=-4.9119435e+015x47=-1.82447346e+015 x50=2.00071929e+015 x53=8.84107088e+014 x56=-6.1658

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論