版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、附件1:外文資料翻譯譯文高速數(shù)控aisi 304不銹鋼加工;工藝參數(shù)優(yōu)化的多目標(biāo)遺傳算法v. s thangarasu*, g. devaraj, r. sivasubramanian摘要這項(xiàng)工作是建立與基本參數(shù)的關(guān)系的反應(yīng),即表面粗糙度(ra)及材料去除率(mrr)。田口通過boxbehnken響應(yīng)(響應(yīng)面法)方法被用于開發(fā)預(yù)測公式 和多目標(biāo)遺傳算法(moga)是用于高速數(shù)控銃削過程具有較高的主軸轉(zhuǎn)速優(yōu)化, 更好的表面光潔度和材料去除率的進(jìn)給速度和切削深度。ra和mrr是各種工 藝參數(shù)可控結(jié)式主軸轉(zhuǎn)速,進(jìn)給速度和切削深度,材料的硬度,濕的或干的加工, 類型的插入,和工作動力,與刀具的幾何形狀
2、的刀具磨損率。為加工參數(shù)的選擇 需要科學(xué),條件和刀具的最合適的類型,一直覺得多年來消除減小誤差的人為干 預(yù),提高系統(tǒng)牛產(chǎn)力。高速數(shù)控銃削過程是科學(xué)的優(yōu)化使用這種方法制定一個(gè)數(shù) 學(xué)模型,涉及的表面粗糙度和材料去除率切削參數(shù)的端銃,精確的主軸轉(zhuǎn)速,進(jìn) 給速度,切削深度和插入式,減少了人為干預(yù)的過程。關(guān)鍵詞:數(shù)控銃床,優(yōu)化,表面光潔,doe,方差分析,材料去除率,箱benkhen 法,遺傳算法,不銹鋼1. 景區(qū)簡介中小企業(yè)參與國內(nèi)和全球客戶的精密零件的制造。這些公司的能力主要取決于他 們以合理的價(jià)格與加工的最佳實(shí)踐牛產(chǎn)兼容產(chǎn)品的能力。大多數(shù)這些制造業(yè)也取 決于技術(shù)和用于切削條件和刀具選擇的最優(yōu)選擇機(jī)
3、床操作經(jīng)驗(yàn)。沒有拇指規(guī)則是 用來適合特定產(chǎn)品的條件。因此,相當(dāng)大的努力取得進(jìn)展,以消除工手冊為基礎(chǔ) 的切削條件,為某一特定工作/訂單的刀具選擇保守的使用方法。為加工參數(shù)的 選擇需要科學(xué),條件和刀具的最合適的類型,一直覺得多年來消除減小誤差的人 為干預(yù)。人們早己認(rèn)識到,在切削條件,如進(jìn)給速度,切削速度和切削深度,應(yīng) 科學(xué)地選擇優(yōu)化的加工操作和提高生產(chǎn)力經(jīng)濟(jì)學(xué)。盡管在低速數(shù)控加工建立最佳 的切削速度的早期作品,一些研究人員(moshat等人。,2010;穆斯塔法阿里, 2011;方等人。,2007)報(bào)道,工藝參數(shù)需要優(yōu)化高速數(shù)控銃床是中小制造業(yè)不 可缺少的和昂貴的過程??偟内厔菔墙档图庸こ杀?、時(shí)間
4、和提高精度和生產(chǎn)率。 這項(xiàng)工作是建立與基本參數(shù)的關(guān)系的反應(yīng),即表面粗糙度(ra)及材料去除率(mrr)。田口法(基于響應(yīng)面法)方法被用于開發(fā)數(shù)控高速銃削過程屮具有 較高的主軸速度預(yù)測公式,具有更好的表面光潔度和morematerial去除率的進(jìn)給 速度和切削深度。表面質(zhì)量是最重要的客戶要求;加工零件的表面質(zhì)量的指標(biāo)是 表面粗糙度。表面粗糙度的各種工藝參數(shù)可控結(jié)式主軸轉(zhuǎn)速,進(jìn)給速度和切削深 度,材料的碩度,濕的或干的加工,和工作動力,刀具的磨損率 隨著刀具幾何。研究工作(拉蒙quiz"薩爾迪納斯等人。庫薩等人2006。2007) 已經(jīng)解決了切削速度的影響,飼料,切削深度,刀尖半徑等因素
5、對表面粗糙度, 表而粗糙度和材料去除率的同時(shí)優(yōu)化(材料去除率)并沒有討論,因?yàn)樗麄兪仟?dú) 立的,非線性的。這項(xiàng)工作是獲得了一個(gè)數(shù)學(xué)模型,涉及的表面粗糙度和材料去 除率切削參數(shù)的端銃,精確的主軸轉(zhuǎn)速,進(jìn)給速度,切割和插入式深度。2. 對屮小企業(yè)的案例研究計(jì)劃的案例研究的數(shù)控加工進(jìn)行確定的各種參數(shù)的影響深度。因此,重耍的參數(shù), 在文獻(xiàn)屮表示(moshat等人。,2010,拉蒙quiza薩爾迪納斯等人2006,銀口楊 和弗氏2008)和信息已在下列數(shù)控工作訂單制造企業(yè)車間收集。(我)先進(jìn)制 造實(shí)驗(yàn)室,cit,哥印拜陀;(ii) coindia現(xiàn)代工具室單元ii,民用機(jī)場,哥印 拜陀;(三)斯里蘭gow
6、rish數(shù)控有限公司chinnavedampatti,哥印拜陀;(四) 斯里蘭卡 parthasarathicnc 公司 chinnavedampatti,哥印拜陀;(五)genune 數(shù)控 有限公司kalappatti,哥印拜陀;(六)寶石精密工程,及甘納巴迪,哥印拜陀。 參數(shù)的確定是研究在2007和2008進(jìn)行了。3. 文獻(xiàn)調(diào)查詳細(xì)調(diào)查研究最近發(fā)表在著名的期刊進(jìn)行了深入的研究以獲得最好的知識和約 束。通過moshat等人的研究。(2010)在數(shù)控銃削加工參數(shù)采用基于pca的田 口方法,為優(yōu)化的fi的而不同時(shí)優(yōu)化的表而粗糙度和材料去除率的研究,優(yōu)化研 究。routara等人。(2010)給出
7、了輪廓的軟質(zhì)材料銃削參數(shù)優(yōu)化研究數(shù)控端面銃 削uns c34000中鉛黃銅多的表面粗糙度特性和一個(gè)單一的響應(yīng)研究的基礎(chǔ)上確 定要研究的參數(shù)。在實(shí)驗(yàn)室進(jìn)行了案例研究提示實(shí)時(shí)研究,為制造企業(yè)在這里找 到解決方案。穆斯塔法和阿里(2006)分析了工件的長度和直徑的影響,切削深 度和進(jìn)給量,同時(shí)也調(diào)查了切削速度,這是一個(gè)重要的加工參數(shù),保持恒定。iu 口方法在這項(xiàng)工作中使用,以獲得更可靠和最佳的結(jié)果。庫薩等人。(2011)解 釋了過度使用高速銃精加工的鋁和鎂更頻繁的使用的結(jié)果的表面質(zhì)量高和更短 的加工時(shí)間省略磨。kadirgama和noor等人(2008)強(qiáng)調(diào)了表面粗糙度的優(yōu)化銃 削鋁合金(aa606
8、1-t6)硬質(zhì)涂層刀片采用響應(yīng)曲而法(rsm)和徑向基函數(shù)網(wǎng) 絡(luò)(rbfn)預(yù)測的推力和表面粗糙度。kechagias (2011)提出了刀具的幾何形 狀和在端銃鋁合金5083,利用田口 l18標(biāo)準(zhǔn)正交陣列實(shí)驗(yàn)研究了表面紋理的切 削參數(shù)的影響。方等人。(2007)己經(jīng)進(jìn)行了廣泛的研究在過去的后刀面磨損和 月牙洼磨損,在高速切削加工對刀具刃口磨損的效果,對切削力和振動的3d高 速完成車削銀基超合金inconel 718o銀口楊和弗洛里奇(2008)編制了高速銃削 鈦合金的個(gè)案研究,對不同的冶金和加工條件對研究考慮提供基礎(chǔ)。鈦合金是基 于案例研究為中等切削速度和進(jìn)給率得到飛機(jī)的材料更好的材料去除的
9、輸入?yún)?數(shù)的設(shè)置進(jìn)行了高速銃削過程。aggarwal和singh (2005)回顧了各種線性和非 線性優(yōu)化技術(shù)和詳細(xì)的相對優(yōu)勢進(jìn)行了討論和推斷的非線性優(yōu)化方法,最適合于 加工過程的優(yōu)化。作者的建議是遵循適當(dāng)?shù)膬?yōu)化方法的基礎(chǔ)上,在手的問題,也 要使用基礎(chǔ)統(tǒng)計(jì)的方法得到初始基本可行解和非線性遺傳算法根據(jù)各自的問題 和解決方案的需求。真正的框架是由曾與陳進(jìn)行研究開發(fā)(2005)在兩個(gè)階段的 參數(shù)優(yōu)化利用田口穩(wěn)健設(shè)計(jì)方法的準(zhǔn)確性較好,這促使與田口 doe和同時(shí)優(yōu)化 過程的兩個(gè)階段分析方法,把各種參數(shù)對表面粗糙度耍求的案例研究。賽濟(jì)徳(2005)的端而銃削過程進(jìn)行了以獲得最佳的參數(shù),切屑的形成和表而粗糙
10、度的 仿真模型,分析并建議考慮參數(shù)的數(shù)量更高層次的分析得到的參數(shù)包括切削力的 最佳設(shè)置,刀具的磨損率和濕的或干的過程。fidan和elsawy (2002)突出了知 識為基礎(chǔ)的解決方案,使用不同的切削條件下的銃削過程的優(yōu)化,找到了獲得加 工涉及大量的變參數(shù)軟件解決方案。樓等。(1999)開發(fā)的數(shù)控銃削過程但只集 中于平均粗糙度但不在材料去除率,表而粗糙度的預(yù)測技術(shù)。上述文獻(xiàn)的分析給 了我們一個(gè)機(jī)會來了解國家的藝術(shù)和為屮小型企業(yè)需要時(shí)間的,在實(shí)驗(yàn)進(jìn)行的案 例研究。附件2:外文原文high speed cnc machining of aisi 304 stainless steel;optimi
11、zation of process parameters by mogav. s. thangarasu*,g devaraj, r. sivasubramanianabstractthis work is to establish the relationship with the basic parameters to the responses namely surface roughness (ra) and material removal rate (mrr). the taguchi based box-behnken rsm (response surface methodol
12、ogy) method is used to develop prediction formula and multi objective genetic algorithm (moga) is used for high speed cnc milling process optimization with higher spindle speed, feed rate and depth of cut for better surface finish and material removal rate. the ra and mrr is resultant of various con
13、trollable process parameters are spindle speed, feed rate and depth of cut, hardness of the material, wet or dry machining, type of insert, and dynamic forces on the job, tool wear rate with cutter geometry. the need for scientific selection of machining parameters, conditions and the most suitable
14、type of cutting tool has been felt over the years to eliminate the human intervention to reduce the errors and to improve productivity of the system. high speed cnc milling process is scientifically optimized using this method formulating a mathematical model that relates the surface roughness and m
15、rr with cutting parameters in end milling, precisely to the spindle speed, feed rate, depth of cut and insert type, which reduces human intervention on the process.keywords: cnc milling, optimization, surface finish, doe, anova, material removal rate, box-benkhen method, genetic algorithm, stainless
16、 steel1. introductionsmall and medium size enterprises are involved in manufacturing of precision components for domestic and global customers. the capability of these companies mainly lies on their ability to produce compatible products at affordable price with best practices of machining most of t
17、hese manufacturing industries are depending on the skill and experience of machine tool operators for optimal selection of cutting conditions and choice of cutting tools. there is no thumb rule is in use to suit the product specific conditions. thus considerable efforts are in progress to eliminate
18、the use of tool makers handbook-based conservative method of selection of cutting conditions and cutting tool selection for a specific job/ order. the need for scientific selection of machining parameters, conditions and the most suitable type of cutting tool has been felt over the years to eliminat
19、e the human intervention to reduce the errors. it has long been recognized that conditions during cutting, such as feed rate, cutting speed and depth of cut, should be selected scientifically to optimize the economics of machining operations and to improve productivity. despite early works on establ
20、ishing optimum cutting speeds in low speed cnc machining, a few researchers (moshat et at, 2010; mustafa and ah, 2011; fang et al, 2007) have reported that the process parameters need to be optimized as high speed cnc milling is an indispensable and costly process for small and medium manufacturing
21、industry. the general trend is to reduce the machining cost and time and improving the accuracy and productivity.this work is to establish the relationship with the basic parameters to the responses namely surface roughness (ra) and material removal rate (mrr). the taguchi based rsm (response surfac
22、e methodology) method is used to develop prediction formula for high speed cnc milling process with higher spindle speed, feed rate and depth of cut with better surface finish and morematerial removal rate. the surface quality is one of the most important customer requirements; the indicator of surf
23、ace quality on machined parts is surface roughness. the surface roughness is resultant of various controllable process parameters are spindle speed, feed rate and depth of cut, hardness of the material, wet or dry machining, and dynamic forces on the job, tool wear ratewith cutter geometry. the rese
24、arch works (ramon quiza sardinas et al. 2006; cusa et al. 2007) have addressed the effects of the cutting speed, feed, depth of cut, nose radius and other factors on the surface roughness but simultaneous optimization of surface roughness and mrr (material removal rate) was not discussed because the
25、y are independent and nonlinear. this work is to obtain a mathematical model that relates the surface roughness and mrr with cutting parameters in end milling, precisely to the spindle speed, feed rate, depth of cut and insert type.2. case study on small and medium enterprisesplanned case study on t
26、he cnc machining was conducted to ascertain the depth of influence of various parameters. thus important parameters are indicated in the literature (moshat et al, 2010, ramon quiza sardinas et al 2006, abele and frolich 2008) and information has been collected at the shop floor of the following cnc
27、job order manufacturing companies, (i) advanced manufacturing laboratory, cit, coimbatore; (ii) coindia modern tool room unit- ii, civil aerodrome, coimbatore; (iii) sri gowrish cnc pvt. ltd. chinnavedampatti, coimbatore; (iv) sri parthasarathicnc pvt. ltd chinnavedampatti, coimbatore; (v) genune cn
28、c pv匸 ltd. kalappatti, coimbatore; (vi) gem precision engineering, ganapathy, coimbatore. the parameters ascertained are for the studies conducted during the 2007 & 2008.3. literature surveydetailed survey on the research works recently published in the eminent journals was studied in depth to a
29、cquire best knowledge and constraints of the study. the research paper by moshat et al. (2010) studied on optimization of cnc milling process parameters using pca based taguchi method that had served the purposes of optimization but not simultaneously optimize the surface roughness and the material
30、removal rate in the study. routara et al. (2010) had given the outline of the soft material milling parameters with their study on optimization of cnc end milling of uns c34000 medium leaded brass with multiple surface roughness characteristics and a single response study provided base in determinin
31、g the parameters to be studied. the case studies conducted at the laboratory have prompted for the real time studies and to find the solution for the manufacturing firms around the place. mustafa and ali (2006) analyzed the effect of the length and diameter of working piece, cutting depth and feed t
32、hat were also investigated while the cutting speed, which is an important machining parameter, was kept constant. taguchi method was used in this work in order to obtain more reliable and optimum results. cusa et al. (2011) explained about the excessive use of high-speed milling for precision machin
33、ing of aluminium and magnesium and more frequently used results in high quality of the surface and shorter machining times by omitting grinding. kadirgama and noor et al (2008) highlighted about optimization of the surface roughness when milling aluminium alloys (aa6061-t6) with carbide coated inser
34、ts using response surface method (rsm) and radian basis function network (rbfn) to predict thrust force and surface roughness. kechagias (2011) brought out the influence of cutter geometry and cutting parameters during end milling on the surface texture of aluminium alloy 5083 that was experimentall
35、y investigated using taguchi l18 standard orthogonal array fang et at (2007) had given the extensive research has been conducted in the past on tool flank wear and crater wear in high-speed machining by investigating the effect of tool edge wear on the cutting forces and vibrations in 3d high-speed
36、finish turning of nickel-based super alloy inconel 71 & abele and frolich (2008) have compiled the case study of high speed milling of titanium alloys and have provided base for different metallurgical and machining conditions to be taken into account for the study. the case study of titanium ba
37、sed alloys were conducted for the high speed milling process for sets of input parameters with moderate cutting speeds and feed rate to get better material removal of aircraft materials. aggarwal and singh (2005) reviewed various linear and non linear optimization techniques in detail and relative a
38、dvantages are also discussed and inferred for the non linear optimization methods, the most suited for the optimization of machining processes. the suggestion of the authors is to follow appropriate set of optimization methods based on the problem on hand and also to use a base statistical method to
39、 get the initial basic feasible solution and a non linear like genetic algorithm according to the respective problem and solution requirements. the real frame work was developed by the study conducted by tzeng and chen (2005) on two phased parameter optimization for better accuracy by taguchis robus
40、t design method, which prompted the two phase analysis technique with taguchis doe and simultaneous optimization procedure to give away the various parameters on surface roughness requirements followed by a case study. sai and bouzid (2005) developed the simulation models and analysis of the chip fo
41、rmation and the surface roughness for up face milling process conducted to get the optimal parameters and suggested to consider the more number of parameters with higher levels of analysis to get the best set of parameters including the cutting force, tool wear rate and wet or dry process. fidan and
42、 elsawy (2002) highlighted the knowledge based solution using various cutting conditions for optimizing the milling process and found out software solution to get the optimal parameters with machining involving large numbers of varying parameters. lou et al. (1999) developed the prediction technique
43、 for the surface roughness of the cnc end milling process but focused only on the roughness average but not at the material removal rate. the above literature analysis had given us an opportunity to knowthe state of the art and the need of the hour for the small and medium type companies, where the
44、experiments were conducted for the case study.五分鐘搞定5000字畢業(yè)論文外文翻譯,你想要的工具都在這里!在科研過程中閱讀翻譯外文文獻(xiàn)是一個(gè)非常重要的環(huán)節(jié),許多領(lǐng) 域高水平的文獻(xiàn)都是外文文獻(xiàn),借鑒一些外文文獻(xiàn)翻譯的經(jīng)驗(yàn)是非常 必要的。由于特殊原因我翻譯外文文獻(xiàn)的機(jī)會比較多,慢慢地就發(fā)現(xiàn) 了外文文獻(xiàn)翻譯過程中的三大利器:google“翻譯,瀕道、金山詞霸(完 整版本)和cnki“翻譯助手”。1 先打開金山詞霸自動取詞功能,然后閱讀文獻(xiàn);2遇到無法理解的長句時(shí),可以交給google處理,處理后的結(jié) 果猛一看,不堪入目,可是經(jīng)過大腦的再處理后句子的意思基本就明 tt;3如果通過google仍然無法理解,感覺就是不同,那肯定是對 其中某個(gè)“常用單詞”理解有誤,因?yàn)槟承﹩卧~看似很簡單,但是在文 獻(xiàn)中有特殊的意思,這時(shí)就可以通過cnki的“翻譯助手”來查詢相關(guān) 單詞的意思,由于cnki的單詞意思都是來源與大量的文獻(xiàn),所以它 的吻合率很高。另外,在翻譯過程中最好以“段落”或者“長句"作為翻譯的基本單 位,這樣才不會造成“只見樹木,不見森林''的誤導(dǎo)。四大工具:1、google 番羽譯: toolsgoogle,眾所周知,谷歌里面的英文文獻(xiàn)和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45086.1-2024車載定位系統(tǒng)技術(shù)要求及試驗(yàn)方法第1部分:衛(wèi)星定位
- 2025農(nóng)村公益性服務(wù)合同書
- 展覽展示裝修合同范例
- 物流門頭定制合同范例
- 農(nóng)村合資建房合同范例
- 承包開挖石方合同范例
- 文案合同范例
- 合同范例公示寫
- 水電工合同范例
- 市場衛(wèi)生保潔合同范例
- 天津市南開區(qū)2023-2024學(xué)年四年級上學(xué)期期末語文試卷
- 數(shù)據(jù)中心智能運(yùn)維體系建設(shè)
- 2023年計(jì)劃訂單專員年度總結(jié)及下一年規(guī)劃
- 體質(zhì)測試成績表(自動統(tǒng)計(jì)數(shù)據(jù))(小學(xué)、初中)
- 2022年全國垃圾分類知識競賽試題庫(附含答案與解析)
- 2024版醫(yī)院手術(shù)安全管理學(xué)習(xí)培訓(xùn)課件
- 材料標(biāo)準(zhǔn)目錄
- 腦卒中后吞咽障礙患者進(jìn)食護(hù)理(2023年中華護(hù)理學(xué)會團(tuán)體標(biāo)準(zhǔn))
- 護(hù)士執(zhí)業(yè)注冊申請表 新
- 妊娠期高血壓疾病診治指南(2022版)解讀
- 公章證照使用登記表
評論
0/150
提交評論