【商務英語_閱讀推薦】WhyYourAnalyticsareFailingYou_第1頁
【商務英語_閱讀推薦】WhyYourAnalyticsareFailingYou_第2頁
【商務英語_閱讀推薦】WhyYourAnalyticsareFailingYou_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、【商務英語閱讀推薦】why your analytics are failing you michael schrage harvard business review為什么數據分析聊勝于無?閱讀中你可能會遇到的詞匯:institutional ,insti*tju: n i adj.制度的;制度上的;學會的 incentive in'sentiv n.動機;刺激adj.激勵的;刺激的 compliance k m'plai ns n.順從,服從;承諾revolve ri'v iv, -'v :lv vi.旋轉;循環(huán)出現;反復考慮vt.使旋轉;使循環(huán);反復考慮n

2、.旋 轉;循壞;旋轉舞臺consensus k n'sens s n一致;輿論;合意many organizations investing millions in big data, analytics, and hiring quants appear frustrated. they undeniably have more and even better data their analysts and analytics are first-rate, too. but managers still seem to be having the same kinds of bus

3、iness arguments and debates except with much better data and analytics the ultimate decisions may be more data-driven but the organizational culture still feels the same. as one cio recently told me, "we're doing analytics in real-time that i could n't eve n have imagi ned five years ag

4、o but it's not havi ng any where n ear the impact i'd have thought/很多公司在大數據,數據分析,分析人員雇傭上投資數百萬,卻收獲甚微。無可置疑,公司 掌握的數據越來越多,質量也在提高;他們的分析師和分析成果都是世界一流的??墒浅?以外,管理者們面對的業(yè)務難題還是一樣的。最終的決策的確是建立在數據基礎之上的,但 組織文化沒有改變。就像-個首席信息官告訴我的,“目前數據分析達到了五年麗我想都不 敢想的高度,可是其作用卻與我的估計相距甚遠?!眞hat gives? after facilitating several

5、 big data and analytics sessions with fortune 1000 firms and spending serious time with organizations that appear quite happy with their returns on analytic investment, a clear "data heuristic" has emerged. companies with mediocre to moderate outcomes use big data and analytics for decisio

6、n support; successful roareturn on analyticsfirms use them to effect and support behavior change. better data-driven analyses are n't simply /zplugged-i n" to existing processes and reviews, they're used to invent and encourage different kinds of conversations and interactions.原因是什么呢?與兒

7、個財富1000強金業(yè)合作人數據和數據分析的經歷,加上調研對分 析投資回報感到滿意的企業(yè),我得出了一個“關于數據的啟發(fā)”。使用大數據和數據分析用 作決策支持的企業(yè)都成果甚微;而用作影響和支持行為變革的公司都獲得了高數據利潤(return on analytics)o只在現有的業(yè)務和審核屮便用更好的數據分析是不夠的,更應該通 過數據分析去創(chuàng)造和鼓勵不同類型的對話及互動。u we don't do the analytics or business intelligenee stuff until management identifies the behaviors we want to

8、cha nge or in flue nee, ” says one finan cial services cio. "improvi ng compliance and financial reporting is the low-hanging fruit but that just means we're using analytics to do what we are already doing better/“在企業(yè)明確想要改變或影響的行為z前,我們不做任何分析或商業(yè)情報z類的東西?!?一 個金融服務的首席信息官說?!案纳坪弦?guī)報告和財務報告很容易實現。但這說明數

9、據分析只 是在錦上添花,并沒有發(fā)揮它的潛力。”the real challenge is recognizing that using big data and analytics to better solve problems and/or make decisions obscures the organizational reality that new analytics often requires new behaviors people may need to share and collaborate more; functions may need to set up di

10、fferent or complementary business processes; managers and executives may need to make sure existing incentives don't undermine analytic-enabled opportunities for growth and efficiencies.現在的挑戰(zhàn)是需要意識到這樣一個問題:使用人數據和數據分析來提高解決問題和(或)決 策能力的共識,便人們忽視了一個組織現實新數據需要新行為。企業(yè)員工需要進一步分 享和合作;企業(yè)職能需要建立不同的或者互補的業(yè)務流程;企業(yè)管理

11、者和執(zhí)行者需要保證現 有的激勵機制不會影響到數據分析帶來的發(fā)展和增效機遇。for example, at one medical supply company, integrating the analytics around "most profitable customers" and "most profitable products" has required a complete re-education of the account sales and technical support teams both for "upsett

12、ing and "educatidients on higher value-added offerings. the company realized that these analytics shouldrft simply be used to support existing sales and services practices but treated as an opport unity to facilitate a new kind of facilitative and consultative sales and support organization.比如說

13、,一個藥甜供應公司,在融合有關公司“最大客戶”和“最賺錢的產品”的信息之后, 進一步就如何測試及提高客戶對高收益訂單接受能力,對銷售和技術支持部門進行了重新培 訓。這個公司意識到,他所獲得的分析結果不能只用于支持現有的銷傳和服務事宜,而更是 一個機會一幫助開發(fā)全新的協(xié)助咨詢式銷售,進而使整個機構受益。the quality of big data and analytics, ironically, mattered less than the purpose to which they were put. the most interesting tensions and arguments

14、 consistently revolved around whether the organization would reap the greatest returns from using analytics to better optimize existing process behaviors or get people to behave differently. but the rough consensus was that the most productive conversations centered on how analytics changed behavior

15、s rather than solved problems.不得不說,相比起大數據和數據分析的用途來說,其質量顯得不那么重要了。目詢最有趣的 矛盾和爭論都圍繞這樣一個問題,即通過使用分析數據,進一步優(yōu)化現冇的業(yè)務行為或者改 變成員的行為,能不能便機構獲得最大收益。但是,關于數據如何改變行為,而不是如何解 決問題,才是最有成果的對話。在這一點上,人們基本達成了共識?!癿ost people in our organization do better with history lessons than with math lessons, ” one consumer product analyt

16、ics executive told me. "its easier for people to understand how new information and metrics should change how they do things than getting them to understand the underlying algorithms . we've learned the hard way that ,/over-the-wall,/ data and analytics isn't the way for our internal cu

17、stomers to get value from our work."“我們機構里的大多數人歷史比數學學得好,” 一個消費品分析官告訴我?!叭藗兏菀桌斫?新信息和指標如何影響他們做事的方式,而理解信息背后的數學問題就很難了我們在這 方面吃過虧,更好的數據和分析并不能使內部客戶從我們工作屮受益?!眊etting the right answeror even asking the right questionturns out not to be the dominant concern of high roa enterprises the questions, the answersthe data and the analyticsare undeniably important but how those questions, answers and analytics align, or conflict, with individual and i

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論