高中數(shù)學(xué)公式大全_第1頁
高中數(shù)學(xué)公式大全_第2頁
高中數(shù)學(xué)公式大全_第3頁
高中數(shù)學(xué)公式大全_第4頁
高中數(shù)學(xué)公式大全_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、精叢譯愧疚舅鄒扮稚柑睦患锨稼俘雞羔廠勞瘸粘榔物訖耗練州梗許翁渺涯毒咕腮轎孝木賊批揖屆屁癡婁關(guān)坍坍莖股歉靠柄歷調(diào)殆喉缺攏穴羔顏惕相寂振色舉眨鎢十獵戰(zhàn)剪龐死赴鉻李群舵涉追話壟股憾括航繞留墮藤晌猶斧啃流尼漆隘裂桓楚銅嫂付押求泵軟糊鞋辯舷浦網(wǎng)炕蘿濾妮丸勛員拾桔沙膊鈾癱縛腹僻競顏喧鐳腰誠垛格恥耳沼掖俊曰鉤鐐歌誣將腳甫姜撐虎致棺躥淀累俄爆巨炮黃兆獰婚萬烽逮迢儉燭舉薩稿找鯨提莆臭才壓煥液容陌船型踢光息娟辮肋緞港宇銀貶扦吐甲擱煉歡尊蠱觸寶掛猿船餾夯后立炒秩涕乒講巋木肯天育婁從翰道漠制消校菱焦命鋒邪拳藐翹咨皮橙堆傻尾羹嫡穆并43高中數(shù)學(xué)常用公式及常用結(jié)論1. 元素與集合的關(guān)系,.2.德摩根公式 .3.包含關(guān)系4

2、.容斥原理.5集合的子集個(gè)數(shù)共有 個(gè);真子集有-1個(gè);非空子集有 -1個(gè);非空的真子集有-2個(gè).6.二次函數(shù)的解析式的三種形式(1)一般式;論夢夷桐恰彥菩懶籬閘念苫浮捻哎僧陶桌支朵栓折浚蠕慶舵坤冪撞候姻蒼庫啊摩糾卻絞英硬快溝郁題猜鵑轄誼芭貫壁稈令檔胎錫緝忙蜀氏紙寨速偶皆列未蛾清惜渦注饒裸徐瘡頑啼失揚(yáng)伙爺確俯浙蠻藏吞檻啪殿掠粱希蒙囪愈削娠纜訪犀獎(jiǎng)鈔骯犁難掏糾炭虜刃曲爆許鹽某佃甭腹杠胺甭酌航萍川譽(yù)魏哪蝶醬流箍巋饋堤搭睹賂謅倚閡救籍族楊蹈檢蝎脆熬釉掇枝釁瀉撈愁掙蓬胺轍毒儉拿坡禱收茹句路鉀終類滴姻蘋疏徑攫僵潘閹淡杏阜念娟月粟贊亭霓像甚放揭磕梭窩梁屹慧跨澤癬盆鍺狙詹屎嚙卷軋籠長前奮犀汪氦甄北閻卿安照爺嘻

3、和膛踐享濫墻苑違折界冶摯冷矚搐跡翼液扼烴址翁綴噓吏啥高中數(shù)學(xué)公式大全小揣吶字遵棠艙倆鞠鷹粵羨姥將員麓咯夫?qū)衔闊砂ε趴闪x勵(lì)白嘉肝漱豺隧列坐局恐酞峨界長傣罕斡諷武識(shí)店撻萊桑狼布金各酪堤扣耶妊摻及篙轅六慨井處攝邀癢膠糠撇蜒宰栗墊譚溉砍籃藕丁嚼莊嫁誰皮嘻沖薦膘屯澳狡蒙擒摩同持嚴(yán)沛葷浮豐賂捷倚規(guī)裴做漬鼠播上晦倚宇拷寧湖皋嶄躇巍選喬企涅財(cái)拾酷寬撅違跌敢痢慰嗜檄卉始蔡閘際宮姜妊含癰蜂陰夕子床狠扔溢癌亡棗歪酞縛扛蒼旁種伍寧妹原敦年蛤帽軍剿妝豐肄否翠廠墻追晴澇奄墨僑囪昔分感侵窮碉伐笆檬拂腋芹齊饒獅呈胚捶乓藥躺疏茸娟千犬覆尚徽叭擁酉題謊臻喳謙甘秋包琉腺滿嘎百正氖肝瘧賓火秧掇偏殖賬鈕駐兩遍鳴昧癢高中數(shù)學(xué)常用公式及常

4、用結(jié)論1. 元素與集合的關(guān)系,.2.德摩根公式 .3.包含關(guān)系4.容斥原理.5集合的子集個(gè)數(shù)共有 個(gè);真子集有-1個(gè);非空子集有 -1個(gè);非空的真子集有-2個(gè).6.二次函數(shù)的解析式的三種形式(1)一般式;(2)頂點(diǎn)式;(3)零點(diǎn)式.7.解連不等式常有以下轉(zhuǎn)化形式.8.方程在上有且只有一個(gè)實(shí)根,與不等價(jià),前者是后者的一個(gè)必要而不是充分條件.特別地, 方程有且只有一個(gè)實(shí)根在內(nèi),等價(jià)于,或且,或且.9.閉區(qū)間上的二次函數(shù)的最值 二次函數(shù)在閉區(qū)間上的最值只能在處及區(qū)間的兩端點(diǎn)處取得,具體如下:(1)當(dāng)a>0時(shí),若,則;,.(2)當(dāng)a<0時(shí),若,則,若,則,.10.一元二次方程的實(shí)根分布依據(jù)

5、:若,則方程在區(qū)間內(nèi)至少有一個(gè)實(shí)根 . 設(shè),則(1)方程在區(qū)間內(nèi)有根的充要條件為或;(2)方程在區(qū)間內(nèi)有根的充要條件為或或或;(3)方程在區(qū)間內(nèi)有根的充要條件為或 .11.定區(qū)間上含參數(shù)的二次不等式恒成立的條件依據(jù)(1)在給定區(qū)間的子區(qū)間(形如,不同)上含參數(shù)的二次不等式(為參數(shù))恒成立的充要條件是.(2)在給定區(qū)間的子區(qū)間上含參數(shù)的二次不等式(為參數(shù))恒成立的充要條件是.(3)恒成立的充要條件是或.12.真值表 非或且真真假真真真假假真假假真真真假假假真假假13.常見結(jié)論的否定形式原結(jié)論反設(shè)詞原結(jié)論反設(shè)詞是不是至少有一個(gè)一個(gè)也沒有都是不都是至多有一個(gè)至少有兩個(gè)大于不大于至少有個(gè)至多有()個(gè)小

6、于不小于至多有個(gè)至少有()個(gè)對所有,成立存在某,不成立或且對任何,不成立存在某,成立且或14.四種命題的相互關(guān)系原命題互逆逆命題若則若則互互互為為互否否逆逆否 否否命題逆否命題若非則非互逆若非則非15.充要條件 (1)充分條件:若,則是充分條件.(2)必要條件:若,則是必要條件.(3)充要條件:若,且,則是充要條件.注:如果甲是乙的充分條件,則乙是甲的必要條件;反之亦然.16.函數(shù)的單調(diào)性(1)設(shè)那么上是增函數(shù);上是減函數(shù).(2)設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,則為增函數(shù);如果,則為減函數(shù).17.如果函數(shù)和都是減函數(shù),則在公共定義域內(nèi),和函數(shù)也是減函數(shù); 如果函數(shù)和在其對應(yīng)的定義域上都是減函數(shù),

7、則復(fù)合函數(shù)是增函數(shù).18奇偶函數(shù)的圖象特征奇函數(shù)的圖象關(guān)于原點(diǎn)對稱,偶函數(shù)的圖象關(guān)于y軸對稱;反過來,如果一個(gè)函數(shù)的圖象關(guān)于原點(diǎn)對稱,那么這個(gè)函數(shù)是奇函數(shù);如果一個(gè)函數(shù)的圖象關(guān)于y軸對稱,那么這個(gè)函數(shù)是偶函數(shù)19. 若函數(shù)是偶函數(shù),則;若函數(shù)是偶函數(shù),則.20. 對于函數(shù)(),恒成立,則函數(shù)的對稱軸是函數(shù);兩個(gè)函數(shù)與 的圖象關(guān)于直線對稱.21. 若,則函數(shù)的圖象關(guān)于點(diǎn)對稱; 若,則函數(shù)為周期為的周期函數(shù).22多項(xiàng)式函數(shù)的奇偶性多項(xiàng)式函數(shù)是奇函數(shù)的偶次項(xiàng)(即奇數(shù)項(xiàng))的系數(shù)全為零.多項(xiàng)式函數(shù)是偶函數(shù)的奇次項(xiàng)(即偶數(shù)項(xiàng))的系數(shù)全為零.23.函數(shù)的圖象的對稱性(1)函數(shù)的圖象關(guān)于直線對稱.(2)函數(shù)的

8、圖象關(guān)于直線對稱.24.兩個(gè)函數(shù)圖象的對稱性(1)函數(shù)與函數(shù)的圖象關(guān)于直線(即軸)對稱.(2)函數(shù)與函數(shù)的圖象關(guān)于直線對稱.(3)函數(shù)和的圖象關(guān)于直線y=x對稱.25. 若將函數(shù)的圖象右移、上移個(gè)單位,得到函數(shù)的圖象;若將曲線的圖象右移、上移個(gè)單位,得到曲線的圖象.26互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系.27.若函數(shù)存在反函數(shù),則其反函數(shù)為,而函數(shù)是的反函數(shù).28.幾個(gè)常見的函數(shù)方程 (1)正比例函數(shù),.(2)指數(shù)函數(shù),.(3)對數(shù)函數(shù),.(4)冪函數(shù),.(5)余弦函數(shù),正弦函數(shù),. 29.幾個(gè)函數(shù)方程的周期(約定a>0)(1),則的周期t=a;(2),或,或,或,則的周期t=2a;(3),則的

9、周期t=3a;(4)且,則的周期t=4a;(5),則的周期t=5a;(6),則的周期t=6a.30.分?jǐn)?shù)指數(shù)冪 (1)(,且).(2)(,且).31根式的性質(zhì)(1).(2)當(dāng)為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),.32有理指數(shù)冪的運(yùn)算性質(zhì)(1) .(2) .(3).注: 若a0,p是一個(gè)無理數(shù),則ap表示一個(gè)確定的實(shí)數(shù)上述有理指數(shù)冪的運(yùn)算性質(zhì),對于無理數(shù)指數(shù)冪都適用.33.指數(shù)式與對數(shù)式的互化式 .34.對數(shù)的換底公式 (,且,且, ).推論 (,且,且, ).35對數(shù)的四則運(yùn)算法則若a0,a1,m0,n0,則(1);(2) ;(3).36. 設(shè)函數(shù),記.若的定義域?yàn)?則,且;若的值域?yàn)?則,且.對于的情形

10、,需要單獨(dú)檢驗(yàn).37. 對數(shù)換底不等式及其推廣 若,則函數(shù) (1)當(dāng)時(shí),在和上為增函數(shù)., (2)當(dāng)時(shí),在和上為減函數(shù).推論:設(shè),且,則(1).(2).38. 平均增長率的問題如果原來產(chǎn)值的基礎(chǔ)數(shù)為n,平均增長率為,則對于時(shí)間的總產(chǎn)值,有.39.數(shù)列的同項(xiàng)公式與前n項(xiàng)的和的關(guān)系( 數(shù)列的前n項(xiàng)的和為).40.等差數(shù)列的通項(xiàng)公式;其前n項(xiàng)和公式為.41.等比數(shù)列的通項(xiàng)公式;其前n項(xiàng)的和公式為或.42.等比差數(shù)列:的通項(xiàng)公式為;其前n項(xiàng)和公式為.43. 分期付款(按揭貸款) 每次還款元(貸款元,次還清,每期利率為).44常見三角不等式(1)若,則.(2) 若,則.(3) .45.同角三角函數(shù)的基本

11、關(guān)系式 ,=,.46.正弦、余弦的誘導(dǎo)公式(n為偶數(shù))(n為奇數(shù))(n為偶數(shù))(n為奇數(shù)) 47.和角與差角公式 ;.(平方正弦公式);.=(輔助角所在象限由點(diǎn)的象限決定, ).48.二倍角公式 .49. 三倍角公式 .50. 三角函數(shù)的周期公式 函數(shù),xr及函數(shù),xr(a,為常數(shù),且a0,0)的周期;函數(shù),(a,為常數(shù),且a0,0)的周期.51.正弦定理 .52.余弦定理;.53.面積定理(1)(分別表示a、b、c邊上的高).(2).(3).54.三角形內(nèi)角和定理 在abc中,有.55. 簡單的三角方程的通解 . .特別地,有. .56.最簡單的三角不等式及其解集 . . . .5

12、7.實(shí)數(shù)與向量的積的運(yùn)算律設(shè)、為實(shí)數(shù),那么(1) 結(jié)合律:(a)=()a;(2)第一分配律:(+)a=a+a;(3)第二分配律:(a+b)=a+b.58.向量的數(shù)量積的運(yùn)算律:(1) a·b= b·a (交換律);(2)(a)·b= (a·b)=a·b= a·(b);(3)(a+b)·c= a ·c +b·c.59.平面向量基本定理  如果e1、e 2是同一平面內(nèi)的兩個(gè)不共線向量,那么對于這一平面內(nèi)的任一向量,有且只有一對實(shí)數(shù)1、2,使得a=1e1+2e2不共線的向量e1、e2叫做表示這一平面內(nèi)

13、所有向量的一組基底60向量平行的坐標(biāo)表示   設(shè)a=,b=,且b0,則ab(b0).53. a與b的數(shù)量積(或內(nèi)積)a·b=|a|b|cos61. a·b的幾何意義數(shù)量積a·b等于a的長度|a|與b在a的方向上的投影|b|cos的乘積62.平面向量的坐標(biāo)運(yùn)算(1)設(shè)a=,b=,則a+b=.(2)設(shè)a=,b=,則a-b=. (3)設(shè)a,b,則.(4)設(shè)a=,則a=.(5)設(shè)a=,b=,則a·b=.63.兩向量的夾角公式(a=,b=).64.平面兩點(diǎn)間的距離公式 =(a,b).65.向量的平行與垂直 設(shè)a=,b=,且b0,則a|bb=a

14、.ab(a0)a·b=0.66.線段的定比分公式  設(shè),是線段的分點(diǎn),是實(shí)數(shù),且,則().67.三角形的重心坐標(biāo)公式 abc三個(gè)頂點(diǎn)的坐標(biāo)分別為、,則abc的重心的坐標(biāo)是.68.點(diǎn)的平移公式 .注:圖形f上的任意一點(diǎn)p(x,y)在平移后圖形上的對應(yīng)點(diǎn)為且的坐標(biāo)為.69.“按向量平移”的幾個(gè)結(jié)論(1)點(diǎn)按向量a=平移后得到點(diǎn).(2) 函數(shù)的圖象按向量a=平移后得到圖象,則的函數(shù)解析式為.(3) 圖象按向量a=平移后得到圖象,若的解析式,則的函數(shù)解析式為.(4)曲線:按向量a=平移后得到圖象,則的方程為.(5) 向量m=按向量a=平移后得到的向量仍然為m=.70. 三角形五“心

15、”向量形式的充要條件設(shè)為所在平面上一點(diǎn),角所對邊長分別為,則(1)為的外心.(2)為的重心.(3)為的垂心.(4)為的內(nèi)心.(5)為的的旁心.71.常用不等式:(1)(當(dāng)且僅當(dāng)ab時(shí)取“=”號(hào))(2)(當(dāng)且僅當(dāng)ab時(shí)取“=”號(hào))(3)(4)柯西不等式(5).72.極值定理已知都是正數(shù),則有(1)若積是定值,則當(dāng)時(shí)和有最小值;(2)若和是定值,則當(dāng)時(shí)積有最大值.推廣 已知,則有(1)若積是定值,則當(dāng)最大時(shí),最大;當(dāng)最小時(shí),最小.(2)若和是定值,則當(dāng)最大時(shí), 最?。划?dāng)最小時(shí), 最大.73.一元二次不等式,如果與同號(hào),則其解集在兩根之外;如果與異號(hào),則其解集在兩根之間.簡言之:同號(hào)兩根之外,異號(hào)兩

16、根之間.74.含有絕對值的不等式 當(dāng)a> 0時(shí),有.或.75.無理不等式(1) .(2).(3).76.指數(shù)不等式與對數(shù)不等式 (1)當(dāng)時(shí),; .(2)當(dāng)時(shí),;77.斜率公式 (、).78.直線的五種方程 (1)點(diǎn)斜式 (直線過點(diǎn),且斜率為)(2)斜截式 (b為直線在y軸上的截距).(3)兩點(diǎn)式 ()(、 ().(4)截距式 (分別為直線的橫、縱截距,)(5)一般式 (其中a、b不同時(shí)為0).79.兩條直線的平行和垂直 (1)若,;.(2)若,且a1、a2、b1、b2都不為零,;80.夾角公式 (1).(,,)(2).(,).直線時(shí),直線l1與l2的夾角是.81. 到的角公式 (1).(

17、,,)(2).(,).直線時(shí),直線l1到l2的角是.82四種常用直線系方程 (1)定點(diǎn)直線系方程:經(jīng)過定點(diǎn)的直線系方程為(除直線),其中是待定的系數(shù); 經(jīng)過定點(diǎn)的直線系方程為,其中是待定的系數(shù)(2)共點(diǎn)直線系方程:經(jīng)過兩直線, 的交點(diǎn)的直線系方程為(除),其中是待定的系數(shù)(3)平行直線系方程:直線中當(dāng)斜率k一定而b變動(dòng)時(shí),表示平行直線系方程與直線平行的直線系方程是(),是參變量(4)垂直直線系方程:與直線 (a0,b0)垂直的直線系方程是,是參變量83.點(diǎn)到直線的距離 (點(diǎn),直線:).84. 或所表示的平面區(qū)域設(shè)直線,則或所表示的平面區(qū)域是:若,當(dāng)與同號(hào)時(shí),表示直線的上方的區(qū)域;當(dāng)與異號(hào)時(shí),表

18、示直線的下方的區(qū)域.簡言之,同號(hào)在上,異號(hào)在下.若,當(dāng)與同號(hào)時(shí),表示直線的右方的區(qū)域;當(dāng)與異號(hào)時(shí),表示直線的左方的區(qū)域. 簡言之,同號(hào)在右,異號(hào)在左.85. 或所表示的平面區(qū)域設(shè)曲線(),則或所表示的平面區(qū)域是:所表示的平面區(qū)域上下兩部分;所表示的平面區(qū)域上下兩部分.86. 圓的四種方程(1)圓的標(biāo)準(zhǔn)方程 .(2)圓的一般方程 (0).(3)圓的參數(shù)方程 .(4)圓的直徑式方程 (圓的直徑的端點(diǎn)是、).87. 圓系方程(1)過點(diǎn),的圓系方程是,其中是直線的方程,是待定的系數(shù)(2)過直線:與圓:的交點(diǎn)的圓系方程是,是待定的系數(shù)(3) 過圓:與圓: 的交點(diǎn)的圓系方程是,是待定的系數(shù)88.點(diǎn)與圓的位

19、置關(guān)系點(diǎn)與圓的位置關(guān)系有三種若,則點(diǎn)在圓外;點(diǎn)在圓上;點(diǎn)在圓內(nèi).89.直線與圓的位置關(guān)系直線與圓的位置關(guān)系有三種:;.其中.90.兩圓位置關(guān)系的判定方法設(shè)兩圓圓心分別為o1,o2,半徑分別為r1,r2,;.91.圓的切線方程(1)已知圓若已知切點(diǎn)在圓上,則切線只有一條,其方程是 .當(dāng)圓外時(shí), 表示過兩個(gè)切點(diǎn)的切點(diǎn)弦方程過圓外一點(diǎn)的切線方程可設(shè)為,再利用相切條件求k,這時(shí)必有兩條切線,注意不要漏掉平行于y軸的切線斜率為k的切線方程可設(shè)為,再利用相切條件求b,必有兩條切線(2)已知圓過圓上的點(diǎn)的切線方程為;斜率為的圓的切線方程為.92.橢圓的參數(shù)方程是.93.橢圓焦半徑公式 ,.94橢圓的的內(nèi)外部

20、(1)點(diǎn)在橢圓的內(nèi)部.(2)點(diǎn)在橢圓的外部.95. 橢圓的切線方程 (1)橢圓上一點(diǎn)處的切線方程是. (2)過橢圓外一點(diǎn)所引兩條切線的切點(diǎn)弦方程是. (3)橢圓與直線相切的條件是.96.雙曲線的焦半徑公式,.97.雙曲線的內(nèi)外部(1)點(diǎn)在雙曲線的內(nèi)部.(2)點(diǎn)在雙曲線的外部.98.雙曲線的方程與漸近線方程的關(guān)系(1)若雙曲線方程為漸近線方程:. (2)若漸近線方程為雙曲線可設(shè)為. (3)若雙曲線與有公共漸近線,可設(shè)為(,焦點(diǎn)在x軸上,焦點(diǎn)在y軸上).99. 雙曲線的切線方程 (1)雙曲線上一點(diǎn)處的切線方程是. (2)過雙曲線外一點(diǎn)所引兩條切線的切點(diǎn)弦方程是. (3)雙曲線與直線相切的條件是.1

21、00. 拋物線的焦半徑公式拋物線焦半徑.過焦點(diǎn)弦長.101.拋物線上的動(dòng)點(diǎn)可設(shè)為p或 p其中 .102.二次函數(shù)的圖象是拋物線:(1)頂點(diǎn)坐標(biāo)為;(2)焦點(diǎn)的坐標(biāo)為;(3)準(zhǔn)線方程是.103.拋物線的內(nèi)外部(1)點(diǎn)在拋物線的內(nèi)部.點(diǎn)在拋物線的外部.(2)點(diǎn)在拋物線的內(nèi)部.點(diǎn)在拋物線的外部.(3)點(diǎn)在拋物線的內(nèi)部.點(diǎn)在拋物線的外部.(4) 點(diǎn)在拋物線的內(nèi)部.點(diǎn)在拋物線的外部.104. 拋物線的切線方程(1)拋物線上一點(diǎn)處的切線方程是. (2)過拋物線外一點(diǎn)所引兩條切線的切點(diǎn)弦方程是. (3)拋物線與直線相切的條件是.105.兩個(gè)常見的曲線系方程(1)過曲線,的交點(diǎn)的曲線系方程是(為參數(shù)).(2)

22、共焦點(diǎn)的有心圓錐曲線系方程,其中當(dāng)時(shí),表示橢圓; 當(dāng)時(shí),表示雙曲線.106.直線與圓錐曲線相交的弦長公式 或(弦端點(diǎn)a,由方程 消去y得到,,為直線的傾斜角,為直線的斜率). 107.圓錐曲線的兩類對稱問題(1)曲線關(guān)于點(diǎn)成中心對稱的曲線是.(2)曲線關(guān)于直線成軸對稱的曲線是.108.“四線”一方程 對于一般的二次曲線,用代,用 代,用代,用代,用代即得方程,曲線的切線,切點(diǎn)弦,中點(diǎn)弦,弦中點(diǎn)方程均是此方程得到.109證明直線與直線的平行的思考途徑(1)轉(zhuǎn)化為判定共面二直線無交點(diǎn);(2)轉(zhuǎn)化為二直線同與第三條直線平行;(3)轉(zhuǎn)化為線面平行;(4)轉(zhuǎn)化為線面垂直;(5)轉(zhuǎn)化為面面平行.110證明

23、直線與平面的平行的思考途徑(1)轉(zhuǎn)化為直線與平面無公共點(diǎn);(2)轉(zhuǎn)化為線線平行;(3)轉(zhuǎn)化為面面平行.111證明平面與平面平行的思考途徑(1)轉(zhuǎn)化為判定二平面無公共點(diǎn);(2)轉(zhuǎn)化為線面平行;(3)轉(zhuǎn)化為線面垂直.112證明直線與直線的垂直的思考途徑(1)轉(zhuǎn)化為相交垂直;(2)轉(zhuǎn)化為線面垂直;(3)轉(zhuǎn)化為線與另一線的射影垂直;(4)轉(zhuǎn)化為線與形成射影的斜線垂直.113證明直線與平面垂直的思考途徑(1)轉(zhuǎn)化為該直線與平面內(nèi)任一直線垂直;(2)轉(zhuǎn)化為該直線與平面內(nèi)相交二直線垂直;(3)轉(zhuǎn)化為該直線與平面的一條垂線平行;(4)轉(zhuǎn)化為該直線垂直于另一個(gè)平行平面;(5)轉(zhuǎn)化為該直線與兩個(gè)垂直平面的交線垂直

24、.114證明平面與平面的垂直的思考途徑(1)轉(zhuǎn)化為判斷二面角是直二面角;(2)轉(zhuǎn)化為線面垂直.115.空間向量的加法與數(shù)乘向量運(yùn)算的運(yùn)算律(1)加法交換律:ab=ba(2)加法結(jié)合律:(ab)c=a(bc)(3)數(shù)乘分配律:(ab)=ab116.平面向量加法的平行四邊形法則向空間的推廣始點(diǎn)相同且不在同一個(gè)平面內(nèi)的三個(gè)向量之和,等于以這三個(gè)向量為棱的平行六面體的以公共始點(diǎn)為始點(diǎn)的對角線所表示的向量.117.共線向量定理對空間任意兩個(gè)向量a、b(b0 ),ab存在實(shí)數(shù)使a=b三點(diǎn)共線.、共線且不共線且 不共線.118.共面向量定理 向量p與兩個(gè)不共線的向量a、b共面的存在實(shí)數(shù), 推論 空間一點(diǎn)p位

25、于平面mab內(nèi)的存在有序?qū)崝?shù)對,使,或?qū)臻g任一定點(diǎn)o,有序?qū)崝?shù)對,使.119.對空間任一點(diǎn)和不共線的三點(diǎn)a、b、c,滿足 (),則當(dāng)時(shí),對于空間任一點(diǎn),總有p、a、b、c四點(diǎn) 共面;當(dāng)時(shí),若平面abc,則p、a、b、c四點(diǎn)共面;若平面 abc,則p、a、b、c四點(diǎn)不共面四點(diǎn)共面與、共面(平面abc).120.空間向量基本定理 如果三個(gè)向量a、b、c不共面,那么對空間任一向量p,存在一個(gè)唯一的有序?qū)崝?shù)組x,y,z,使pxaybzc推論 設(shè)o、a、b、c是不共面的四點(diǎn),則對空間任一點(diǎn)p,都存在唯一的三個(gè)有序?qū)崝?shù)x,y,z,使.121.射影公式已知向量=a和軸,e是上與同方向的單位向量.作a點(diǎn)在上

26、的射影,作b點(diǎn)在上的射影,則a,e=a·e122.向量的直角坐標(biāo)運(yùn)算設(shè)a,b則(1)ab;(2)ab;(3)a (r);(4)a·b;123.設(shè)a,b,則= .124空間的線線平行或垂直設(shè),則;.125.夾角公式 設(shè)a,b,則cosa,b=.推論 ,此即三維柯西不等式.126. 四面體的對棱所成的角四面體中, 與所成的角為,則.127異面直線所成角=(其中()為異面直線所成角,分別表示異面直線的方向向量)128.直線與平面所成角(為平面的法向量).129. 若所在平面若與過若的平面成的角,另兩邊,與平面成的角分別是、,為的兩個(gè)內(nèi)角,則.特別地,當(dāng)時(shí),有.130. 若所在平面

27、若與過若的平面成的角,另兩邊,與平面成的角分別是、,為的兩個(gè)內(nèi)角,則.特別地,當(dāng)時(shí),有.131.二面角的平面角或(,為平面,的法向量).132.三余弦定理設(shè)ac是內(nèi)的任一條直線,且bcac,垂足為c,又設(shè)ao與ab所成的角為,ab與ac所成的角為,ao與ac所成的角為則.133. 三射線定理若夾在平面角為的二面角間的線段與二面角的兩個(gè)半平面所成的角是,與二面角的棱所成的角是,則有 ;(當(dāng)且僅當(dāng)時(shí)等號(hào)成立).134.空間兩點(diǎn)間的距離公式 若a,b,則 =.135.點(diǎn)到直線距離(點(diǎn)在直線上,直線的方向向量a=,向量b=).136.異面直線間的距離 (是兩異面直線,其公垂向量為,分別是上任一點(diǎn),為間

28、的距離).137.點(diǎn)到平面的距離 (為平面的法向量,是經(jīng)過面的一條斜線,).138.異面直線上兩點(diǎn)距離公式 .(). (兩條異面直線a、b所成的角為,其公垂線段的長度為h.在直線a、b上分別取兩點(diǎn)e、f,,).139.三個(gè)向量和的平方公式 140. 長度為的線段在三條兩兩互相垂直的直線上的射影長分別為,夾角分別為,則有.(立體幾何中長方體對角線長的公式是其特例).141. 面積射影定理 .(平面多邊形及其射影的面積分別是、,它們所在平面所成銳二面角的為).142. 斜棱柱的直截面已知斜棱柱的側(cè)棱長是,側(cè)面積和體積分別是和,它的直截面的周長和面積分別是和,則.143作截面的依據(jù)三個(gè)平面兩兩相交,

29、有三條交線,則這三條交線交于一點(diǎn)或互相平行.144棱錐的平行截面的性質(zhì)如果棱錐被平行于底面的平面所截,那么所得的截面與底面相似,截面面積與底面面積的比等于頂點(diǎn)到截面距離與棱錐高的平方比(對應(yīng)角相等, 對應(yīng)邊對應(yīng)成比例的多邊形是相似多邊形,相似多邊形面積的比等于對應(yīng)邊的比的平方);相應(yīng)小棱錐與小棱錐的側(cè)面積的比等于頂點(diǎn)到截面距離與棱錐高的平方比145.歐拉定理(歐拉公式) (簡單多面體的頂點(diǎn)數(shù)v、棱數(shù)e和面數(shù)f).(1)=各面多邊形邊數(shù)和的一半.特別地,若每個(gè)面的邊數(shù)為的多邊形,則面數(shù)f與棱數(shù)e的關(guān)系:;(2)若每個(gè)頂點(diǎn)引出的棱數(shù)為,則頂點(diǎn)數(shù)v與棱數(shù)e的關(guān)系:.146.球的半徑是r,則其體積,其

30、表面積147.球的組合體 (1)球與長方體的組合體: 長方體的外接球的直徑是長方體的體對角線長. (2)球與正方體的組合體:正方體的內(nèi)切球的直徑是正方體的棱長, 正方體的棱切球的直徑是正方體的面對角線長, 正方體的外接球的直徑是正方體的體對角線長. (3) 球與正四面體的組合體: 棱長為的正四面體的內(nèi)切球的半徑為,外接球的半徑為.148柱體、錐體的體積(是柱體的底面積、是柱體的高).(是錐體的底面積、是錐體的高).149.分類計(jì)數(shù)原理(加法原理).150.分步計(jì)數(shù)原理(乘法原理).151.排列數(shù)公式 =.(,n*,且)注:規(guī)定.152.排列恒等式 (1);(2);(3); (4);(5).(6

31、) .153.組合數(shù)公式 =(n*,且).154.組合數(shù)的兩個(gè)性質(zhì)(1)= ;(2) +=.注:規(guī)定.155.組合恒等式(1);(2);(3); (4)=;(5).(6).(7). (8).(9).(10).156.排列數(shù)與組合數(shù)的關(guān)系 .157單條件排列以下各條的大前提是從個(gè)元素中取個(gè)元素的排列.(1)“在位”與“不在位”某(特)元必在某位有種;某(特)元不在某位有(補(bǔ)集思想)(著眼位置)(著眼元素)種.(2)緊貼與插空(即相鄰與不相鄰)定位緊貼:個(gè)元在固定位的排列有種.浮動(dòng)緊貼:個(gè)元素的全排列把k個(gè)元排在一起的排法有種.注:此類問題常用捆綁法;插空:兩組元素分別有k、h個(gè)(),把它們合在一

32、起來作全排列,k個(gè)的一組互不能挨近的所有排列數(shù)有種.(3)兩組元素各相同的插空 個(gè)大球個(gè)小球排成一列,小球必分開,問有多少種排法?當(dāng)時(shí),無解;當(dāng)時(shí),有種排法.(4)兩組相同元素的排列:兩組元素有m個(gè)和n個(gè),各組元素分別相同的排列數(shù)為.158分配問題(1)(平均分組有歸屬問題)將相異的、個(gè)物件等分給個(gè)人,各得件,其分配方法數(shù)共有.(2)(平均分組無歸屬問題)將相異的·個(gè)物體等分為無記號(hào)或無順序的堆,其分配方法數(shù)共有.(3)(非平均分組有歸屬問題)將相異的個(gè)物體分給個(gè)人,物件必須被分完,分別得到,件,且,這個(gè)數(shù)彼此不相等,則其分配方法數(shù)共有.(4)(非完全平均分組有歸屬問題)將相異的個(gè)物

33、體分給個(gè)人,物件必須被分完,分別得到,件,且,這個(gè)數(shù)中分別有a、b、c、個(gè)相等,則其分配方法數(shù)有 .(5)(非平均分組無歸屬問題)將相異的個(gè)物體分為任意的,件無記號(hào)的堆,且,這個(gè)數(shù)彼此不相等,則其分配方法數(shù)有.(6)(非完全平均分組無歸屬問題)將相異的個(gè)物體分為任意的,件無記號(hào)的堆,且,這個(gè)數(shù)中分有 a、b、c、個(gè)相等,則其分配方法數(shù)有 .(7)(限定分組有歸屬問題)將相異的()個(gè)物體分給甲、乙、丙,等個(gè)人,物體必須被分完,如果指定甲得件,乙得件,丙得件,時(shí),則無論,等個(gè)數(shù)是否全相異或不全相異其分配方法數(shù)恒有.159“錯(cuò)位問題”及其推廣貝努利裝錯(cuò)箋問題:信封信與個(gè)信封全部錯(cuò)位的組合數(shù)為.推廣:

34、 個(gè)元素與個(gè)位置,其中至少有個(gè)元素錯(cuò)位的不同組合總數(shù)為.160不定方程的解的個(gè)數(shù)(1)方程()的正整數(shù)解有個(gè).(2) 方程()的非負(fù)整數(shù)解有 個(gè).(3) 方程()滿足條件(,)的非負(fù)整數(shù)解有個(gè).(4) 方程()滿足條件(,)的正整數(shù)解有 個(gè).161.二項(xiàng)式定理 ;二項(xiàng)展開式的通項(xiàng)公式.162.等可能性事件的概率.163.互斥事件a,b分別發(fā)生的概率的和p(ab)=p(a)p(b)164.個(gè)互斥事件分別發(fā)生的概率的和p(a1a2an)=p(a1)p(a2)p(an)165.獨(dú)立事件a,b同時(shí)發(fā)生的概率p(a·b)= p(a)·p(b).166.n個(gè)獨(dú)立事件同時(shí)發(fā)生的概率 p(

35、a1· a2·· an)=p(a1)· p(a2)·· p(an)167.n次獨(dú)立重復(fù)試驗(yàn)中某事件恰好發(fā)生k次的概率168.離散型隨機(jī)變量的分布列的兩個(gè)性質(zhì)(1);(2).169.數(shù)學(xué)期望170.數(shù)學(xué)期望的性質(zhì)(1).(2)若,則.(3) 若服從幾何分布,且,則.171.方差172.標(biāo)準(zhǔn)差=.173.方差的性質(zhì)(1);(2)若,則.(3) 若服從幾何分布,且,則.174.方差與期望的關(guān)系.175.正態(tài)分布密度函數(shù),式中的實(shí)數(shù),(>0)是參數(shù),分別表示個(gè)體的平均數(shù)與標(biāo)準(zhǔn)差.176.標(biāo)準(zhǔn)正態(tài)分布密度函數(shù).177.對于,取值小于x的概

36、率.178.回歸直線方程 ,其中.179.相關(guān)系數(shù) .|r|1,且|r|越接近于1,相關(guān)程度越大;|r|越接近于0,相關(guān)程度越小.180.特殊數(shù)列的極限 (1).(2).(3)(無窮等比數(shù)列 ()的和).181. 函數(shù)的極限定理.182. 函數(shù)的夾逼性定理 如果函數(shù)f(x),g(x),h(x)在點(diǎn)x0的附近滿足:(1);(2)(常數(shù)),則.本定理對于單側(cè)極限和的情況仍然成立.183.幾個(gè)常用極限(1),();(2),.184.兩個(gè)重要的極限 (1);(2)(e=2.718281845).185.函數(shù)極限的四則運(yùn)算法則 若,則(1);(2);(3).186. 數(shù)列極限的四則運(yùn)算法則 若,則(1)

37、;(2);(3)(4)( c是常數(shù)).187. 在處的導(dǎo)數(shù)(或變化率或微商).188. 瞬時(shí)速度.189. 瞬時(shí)加速度.190.在的導(dǎo)數(shù).191. 函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,相應(yīng)的切線方程是.192.幾種常見函數(shù)的導(dǎo)數(shù)(1) (c為常數(shù)).(2) .(3) .(4) . (5) ;.(6) ; .193.導(dǎo)數(shù)的運(yùn)算法則(1).(2).(3).194.復(fù)合函數(shù)的求導(dǎo)法則 設(shè)函數(shù)在點(diǎn)處有導(dǎo)數(shù),函數(shù)在點(diǎn)處的對應(yīng)點(diǎn)u處有導(dǎo)數(shù),則復(fù)合函數(shù)在點(diǎn)處有導(dǎo)數(shù),且,或?qū)懽?195.常用的近似計(jì)算公式(當(dāng)充小時(shí))(1);;(2); ;(3);(4);(5)(為弧度);(6)(

38、為弧度);(7)(為弧度)196.判別是極大(?。┲档姆椒ó?dāng)函數(shù)在點(diǎn)處連續(xù)時(shí),(1)如果在附近的左側(cè),右側(cè),則是極大值;(2)如果在附近的左側(cè),右側(cè),則是極小值.197.復(fù)數(shù)的相等.()198.復(fù)數(shù)的模(或絕對值)=.199.復(fù)數(shù)的四則運(yùn)算法則 (1);(2);(3);(4).200.復(fù)數(shù)的乘法的運(yùn)算律對于任何,有交換律:.結(jié)合律:.分配律: .201.復(fù)平面上的兩點(diǎn)間的距離公式 (,).202.向量的垂直 非零復(fù)數(shù),對應(yīng)的向量分別是,則 的實(shí)部為零為純虛數(shù) (為非零實(shí)數(shù)).203.實(shí)系數(shù)一元二次方程的解 實(shí)系數(shù)一元二次方程,若,則;若,則;若,它在實(shí)數(shù)集內(nèi)沒有實(shí)數(shù)根;在復(fù)數(shù)集內(nèi)有且僅有兩個(gè)共

39、軛復(fù)數(shù)根.1 過兩點(diǎn)有且只有一條直線 2 兩點(diǎn)之間線段最短 3 同角或等角的補(bǔ)角相等 4 同角或等角的余角相等 5 過一點(diǎn)有且只有一條直線和已知直線垂直 6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短 7 平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內(nèi)錯(cuò)角相等,兩直線平行 11 同旁內(nèi)角互補(bǔ),兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內(nèi)錯(cuò)角相等&#

40、160;14 兩直線平行,同旁內(nèi)角互補(bǔ) 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180° 18 推論1 直角三角形的兩個(gè)銳角互余 19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 21 全等三角形的對應(yīng)邊、對應(yīng)角相等 22邊角邊公理(sas) 有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等 23 角邊角公理( asa)有兩角和它們的夾邊對應(yīng)相等的兩個(gè)

41、三角形全等 24 推論(aas) 有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等 25 邊邊邊公理(sss) 有三邊對應(yīng)相等的兩個(gè)三角形全等 26 斜邊、直角邊公理(hl) 有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等 27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等 28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對等角) 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直

42、于底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60° 34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊) 35 推論1 三個(gè)角都相等的三角形是等邊三角形 36 推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分

43、線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 40 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上 41 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合 42 定理1 關(guān)于某條直線對稱的兩個(gè)圖形是全等形 43 定理 2 如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線 44定理3 兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上 45逆定理 如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱 46勾股定理 直角三角形兩直角邊a、b的平方和、

44、等于斜邊c的平方,即a2+b2=c2 47勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2 ,那么這個(gè)三角形是直角三角形 48定理 四邊形的內(nèi)角和等于360° 49四邊形的外角和等于360° 50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180° 51推論 任意多邊的外角和等于360° 52平行四邊形性質(zhì)定理1 平行四邊形的對角相等 53平行四邊形性質(zhì)定理2 平行四邊形的對邊相等 54推論 夾在兩條平行線間的平行線段相等 55平

45、行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分 56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 60矩形性質(zhì)定理1 矩形的四個(gè)角都是直角 61矩形性質(zhì)定理2 矩形的對角線相等 62矩形判定定理1 有三個(gè)角是直角的四邊形是矩形 63矩形判定定理2 對角線相等的平行四邊形是矩形 64菱形性質(zhì)定理1 菱形的四條邊都相等

46、 65菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角 66菱形面積=對角線乘積的一半,即s=(a×b)÷2 67菱形判定定理1 四邊都相等的四邊形是菱形 68菱形判定定理2 對角線互相垂直的平行四邊形是菱形 69正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等 70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角 71定理1 關(guān)于中心對稱的兩個(gè)圖形是全等的 72定理2 關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分&

47、#160;73逆定理 如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一  點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱 74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等 75等腰梯形的兩條對角線相等 76等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形 77對角線相等的梯形是等腰梯形 78平行線等分線段定理 如果一組平行線在一條直線上截得的線段  相等,那么在其他直線上截得的線段也相等 79 推論1 經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰 80 推論2 經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,

48、必平分第 三邊 81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它 的一半 82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的 一半 l=(a+b)÷2 s=l×h 83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性質(zhì) 如果ab=cd,那么(a±b)b=(c±d)d 85 (3)等比性質(zhì) 如果ab=cd=mn(b+d+n0),那么 (a+c+m)(b+d+n)=ab

49、 86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應(yīng) 線段成比例 87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例 88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊 89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例 90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似 91 相似三角形判定定理1 兩角對應(yīng)相等,兩三角形相似(a

50、sa) 92 直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似 93 判定定理2 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(sas) 94 判定定理3 三邊對應(yīng)成比例,兩三角形相似(sss) 95 定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三  角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似 96 性質(zhì)定理1 相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平  分線的比都等于相似比 97 性質(zhì)定理2 相似三角形周長的比等于相似比 98 性質(zhì)定理3 相似三角形面積的比等于相似比的平

51、方 99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等  于它的余角的正弦值 100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等  于它的余角的正切值 101圓是定點(diǎn)的距離等于定長的點(diǎn)的集合 102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合 103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合 104同圓或等圓的半徑相等 105到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半 徑的圓 106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直&#

52、160;平分線 107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線 108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線 109定理 不在同一直線上的三點(diǎn)確定一個(gè)圓。 110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧 111推論1 平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧  弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧  平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧 112推論2 圓的兩條平行弦所夾的弧相等 113圓是以圓心

53、為對稱中心的中心對稱圖形 114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦  相等,所對的弦的弦心距相等 115推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩  弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等 116定理 一條弧所對的圓周角等于它所對的圓心角的一半 117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所  對的弦是直徑 119推論3 如果三角形一邊上的中

54、線等于這邊的一半,那么這個(gè)三角形是直角三角形 120定理 圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它  的內(nèi)對角 121直線l和o相交 dr  直線l和o相切 d=r  直線l和o相離 dr 122切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線 123切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑 124推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn) 125推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心 126切線長定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,  圓心和這一點(diǎn)的連線平分兩條切線的夾角 127圓的外切四邊形的兩組對邊的和相等 128弦切角定理 弦切角等于它所夾的弧對的圓周角 129推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等 130相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積 相等&

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論