




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、latin squares, cubes and hypercubesjerzy wojdymarch 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes2definition and examplesna is a square array in which each row and each column consists of the same set of entries without repetition.march 31, 2007jerzy wojdylo, latin squares, cubes and hy
2、percubes3existencendo latin squares exist for every +?nyes. march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes4operations on latin squares of a latin square is a upermutation of its rows, upermutation of its columns,upermutation of its symbols. (these permutations do not have to be the
3、 same.) is iff its first row is 1, 2, march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes5enumeration of lsnhow many latin squares ( rectangles) are there?nif order 11brendan d. mckay, ian m. wanless, “” 2004(?) (show the table on page 5)/wiki/latin_square#the_numb
4、er_of_latin_squaresnorder 12, 13, open problem.march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes6enumeration of ls1234567891011 1114569408 16942080 535281401856 377597570964258816 7580721483160132811489280 5363937773277371298119673540771840n! (n-1)! times the number of reduced latin s
5、quares march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes7orthogonal latin squaresntwo latin squares = and = are iff the 2 pairs ( , ) are all different.march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes8orthogonal ls - useful property two latin squares are orthogonal iff
6、 their normal forms are orthogonal. (you can permute symbols so both ls have the first row 1, 2, , )nno two 22 latin squares are orthogonal.1221march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes9orthogonal latin squaresnthis 44 latin square does not have an orthogonal mate.123423413412
7、41231234march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes10orthogonal ls history 1782nleonhard eulermarch 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes11orthogonal ls history 1782nleonhard euler, originally published in verhandelingen uitgegeven door het zeeuwsch genootsc
8、hap der wetenschappen te vlissingen 9, middelburg 1782, pp. 85-239also available in: commentationes arithmeticae 2, 1849, pp. 302-361opera omnia: series 1, volume 7, pp. 291-392 march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes12orthogonal ls history 1900-01ngaston tarry verified case
9、 =6. compte rendu de lassoc. franais avanc. sci. naturel 1, 122-123, 1900. compte rendu de lassoc. franais avanc. sci. naturel 2, 170-203, 1901. ntwo years of sundays.march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes13orthogonal ls history 1959nin 1959, bose and shrikhande constructed
10、 a pair of orthogonal latin squares of order 22. nthen parker constructed a pair of orthogonal latin squares of order 10. npicture (next slide) orhttp:/www.cecm.sfu.ca/organics/papers/lam/paper/html/nytimes.htmlmarch 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes14orthogonal ls nyt 4/26/
11、1959march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes15orthogonal ls history 1960n1960 r.c. bose, s.s. shrikhande, e.t. parker, , canadian journal of mathematics, vol. 12 (1960), pp. 189-203. nthere exists a pair of orthogonal ls for all +, with exception of = 2 and = 6.march 31, 2007
12、jerzy wojdylo, latin squares, cubes and hypercubes16mutually orthogonal ls (mols)na set of ls that are pairwise orthogonal is called a set of ().the largest number of mols is 1.march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes17mutually orthogonal ls (mols)if is prime, then there are
13、1 -mols.nproofconstruction of =,=1, 2, , 1: = + (mod ). if = , prime, then there are 1 -mols.if there are 1 -mols, then = , prime.march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes18mutually orthogonal ls (mols)let n( ) be the number of mols that exist of size .: find n( ) for march 31
14、, 2007jerzy wojdylo, latin squares, cubes and hypercubes19mols lower bounds for n(n)020406080100120140160180047498769615406080100120771802135486666632224268210261016264365636761067542467671247796144566666676264666610612671661087575761276769828486881087148168810246666666611103057076130150819012531576
15、13676713125527261127817219214345566686615456567776716156767676146171636769681361569196183456666766191855878861386178198march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes20completion problemsnwhen can a latin rectangle with entries in 1, 2, , be completed to a latin square?1345351251341
16、2344312march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes21completion theoremslet any latin rectangle with entries in 1, 2, , can be completed to a latin square.nthe proof uses halls marriage theorem or transversals to complete the bottom rows. the construction fills one row at a time.
17、 march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes22completion problems nthe good:1234431221433421march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes23completion theoremslet ,2, n6nj. arkin, e. g. strauss, the fibonacci quarterly, vol. 12 (3) (1974): 288-292.nj. arkin, e.
18、 g. strauss, the fibonacci quarterly, vol. 19 (3) (1981): 281-293.nm. trenkler, , czechoslovak mathematical journal, 55 (130) (2005), 725-728.nall produced essentially the same theorem:march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes33orthogonal hypercubes n2, n6there exists a set of
19、 orthogonal latin -hypercubes of order , 2 and march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes34orthogonal hypercubes n2, n61+1 = (march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes35orthogonal hypercubes n = 6nwhat about = 6? nj. kerr, , the fibonacci quarterly vol. 20. no. 4 (1982): 360-362.nsimilar theorem.nexamples of three orthogonal latin cubes and four ort
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國(guó)鋁鎂合金地架市場(chǎng)調(diào)查研究報(bào)告
- 企業(yè)合規(guī)風(fēng)險(xiǎn)評(píng)估框架試題及答案
- 網(wǎng)絡(luò)管理員職業(yè)發(fā)展建議試題及答案
- 縱深挖掘2025年VB考試試題及答案
- 信息處理技術(shù)員高效復(fù)習(xí)試題及答案
- 法學(xué)概論考試的法律邏輯推理與試題及答案
- 分析利弊的試題及答案
- 鑄造技能考試試題及答案
- 中國(guó)奧數(shù)考試試題及答案
- 觀光類面試題及答案
- 雕像制作合同協(xié)議
- 2025年全國(guó)燃?xì)獍踩a(chǎn)管理主要負(fù)責(zé)人考試筆試試題(500題)附答案
- 列那狐測(cè)試題及答案
- 《酉陽雜俎》女性角色研究
- 浙江省嘉興市2025屆高三下學(xué)期4月教學(xué)測(cè)試物理+答案
- 嬰幼兒照護(hù) 課件 2遺尿現(xiàn)象的干預(yù)
- 2025年廣東省深圳市31校中考一模歷史試題及答案
- 餐飲廚房燃?xì)庠O(shè)備安全操作與維護(hù)
- 2025年上海勞動(dòng)合同范本
- 氧化碳?xì)馄堪徇\(yùn)、存放及使用管理制度
- 老年人安全用藥與護(hù)理
評(píng)論
0/150
提交評(píng)論