下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、高二導(dǎo)數(shù)題做題方法高二的同學(xué)在平時(shí)練習(xí)和考試也好都會(huì)碰到倒數(shù)題目,看見(jiàn)導(dǎo)數(shù)題就不想下手去做。針對(duì)大家的問(wèn)題,小編整理了做導(dǎo)數(shù)題的指導(dǎo)方法希望給大家以后做導(dǎo)數(shù)題帶來(lái)參考和借鑒。(1)求函數(shù)中某參數(shù)的值或給定參數(shù)的值求導(dǎo)數(shù)或切線一般來(lái)說(shuō),一到比較溫和的導(dǎo)數(shù)題的會(huì)在第一問(wèn)設(shè)置這樣的問(wèn)題:若f(x)在x=k時(shí)取得極值,試求所給函數(shù)中參數(shù)的值;或者是f(x)在(a,f(a)處的切線與某已知直線垂直,試求所給函數(shù)中參數(shù)的值等等很多條件。雖然會(huì)有很多的花樣,但只要明白他們的本質(zhì)是考察大家求導(dǎo)數(shù)的能力,就會(huì)輕松解決。這一般都是用來(lái)送分的,所以遇到這樣的題,一定要淡定,方法是:先求出所給函數(shù)的導(dǎo)函數(shù),然后利用題
2、目所給的已知條件,以上述第一種情形為例:令x=k,f(x)的導(dǎo)數(shù)為零,求解出函數(shù)中所含的參數(shù)的值,然后檢驗(yàn)此時(shí)是否為函數(shù)的極值。注意:導(dǎo)函數(shù)一定不能求錯(cuò),否則不只第一問(wèn)會(huì)掛,整個(gè)題目會(huì)一并掛掉。保證自己求導(dǎo)不會(huì)求錯(cuò)的最好方法就是求導(dǎo)時(shí)不要光圖快,一定要小心謹(jǐn)慎,另外就是要將導(dǎo)數(shù)公式記牢,不能有馬虎之處。遇到例子中的情況,一道要記得檢驗(yàn),尤其是在求解出來(lái)兩個(gè)解的情況下,更要檢驗(yàn),否則有可能會(huì)多解,造成扣分,得不償失。所以做兩個(gè)字來(lái)概括這一類型題的方法就是:淡定。別人送分,就不要客氣。求切線時(shí),要看清所給的點(diǎn)是否在函數(shù)上,若不在,要設(shè)出切點(diǎn),再進(jìn)行求解。切線要寫成一般式。(2)求函數(shù)的單調(diào)性或單調(diào)
3、區(qū)間以及極值點(diǎn)和最值一般這一類題都是在函數(shù)的第二問(wèn),有時(shí)也有可能在第一問(wèn),依照題目的難易來(lái)定。這一類題問(wèn)法都比較的簡(jiǎn)單,一般是求f(x)的單調(diào)(增減)區(qū)間或函數(shù)的單調(diào)性,以及函數(shù)的極大(小)值或是籠統(tǒng)的函數(shù)極值。一般來(lái)說(shuō),由于北京市高考不要求二階導(dǎo)數(shù)的計(jì)算,所以這類題目也是送分題,所以做這類題也要淡定。這類問(wèn)題的方法是:首先寫定義域,求函數(shù)的導(dǎo)函數(shù),并且進(jìn)行通分,變?yōu)榧俜质叫问健M乱话阌袃深愃悸?,一是走一步看一步型,在行進(jìn)的過(guò)程中,一點(diǎn)點(diǎn)發(fā)現(xiàn)參數(shù)應(yīng)該討論的范圍,一步步解題。這種方法個(gè)人認(rèn)為比較累,而且容易丟掉一些情況沒(méi)有進(jìn)行討論,所以比較推薦第二種方法,就是所謂的一步到位型,先通過(guò)觀察看出我
4、們要討論的參數(shù)的幾個(gè)必要的臨介值,然后以這些值為分界點(diǎn),分別就這些臨界點(diǎn)所分割開(kāi)的區(qū)間進(jìn)行討論,這樣不僅不會(huì)漏掉一些對(duì)參數(shù)必要的討論,而且還會(huì)是自己做題更有條理,更為高效。極值的求法比較簡(jiǎn)單,就是在上述步驟的基礎(chǔ)上,令導(dǎo)函數(shù)為零,求出符合條件的根,然后進(jìn)行列表,判斷其是否為極值點(diǎn)并且判斷出該極值點(diǎn)左右的單調(diào)性,進(jìn)而確定該點(diǎn)為極大值還是極小值,最后進(jìn)行答題。最值問(wèn)題是建立在極值的基礎(chǔ)之上的,只是有些題要比較極值點(diǎn)與邊界點(diǎn)的大小,不能忘記邊界點(diǎn)。注意:要注意問(wèn)題,看題干問(wèn)的是單調(diào)區(qū)間還是單調(diào)性,極大值還是極小值,這決定著你最后如何答題。還有最關(guān)鍵的,要注意定義域,有時(shí)題目不會(huì)給出定義域,這時(shí)就需要
5、你自己寫出來(lái)。沒(méi)有注意定義域問(wèn)題很嚴(yán)重。分類要準(zhǔn),不要慌張。求極值一定要列表,不能使用二階導(dǎo)數(shù),否則只有做對(duì)但不得分的下場(chǎng)。(3)恒成立或在一定條件下成立時(shí)求參數(shù)范圍這類問(wèn)題一般都設(shè)置在導(dǎo)數(shù)題的第三問(wèn),也就是最后一問(wèn),屬于有一定難度的問(wèn)題。這就需要我們一定的綜合能力。不僅要對(duì)導(dǎo)數(shù)有一定的理解,而且對(duì)于一些不等式、函數(shù)等的知識(shí)要有比較好的掌握。這一類題目不是送分題,屬于扣分題,但掌握好了方法,也可以百發(fā)百中。方法如下:做這類恒成立類型題目或者一定范圍內(nèi)成立的題目的核心的四個(gè)字就是:分離變量。一定要將所求的參數(shù)分離出來(lái),否則后患無(wú)窮。有些人總是認(rèn)為不分離變量也可以做。一些簡(jiǎn)單的題目誠(chéng)然可以做,但到
6、了真正的難題,分離變量的優(yōu)勢(shì)立刻體現(xiàn),它可以規(guī)避掉一些極為繁瑣的討論,只用一些簡(jiǎn)單的代數(shù)變形可以搞定,而不分離變量就要面臨著極為麻煩的討論,不僅浪費(fèi)時(shí)間,而且還容易出差錯(cuò)。所以面對(duì)這樣的問(wèn)題,分離變量是首選之法。當(dāng)然有的題確實(shí)不能分離變量,那么這時(shí)就需要我們的觀察能力,如果還是沒(méi)有簡(jiǎn)便方法,那么才會(huì)進(jìn)入到討論階段。分離變量后,就要開(kāi)始求分離后函數(shù)的最大或者最小值,那么這里就要重新構(gòu)建一個(gè)函數(shù),接下來(lái)的步驟就和(2)中基本相同了。注意:分離時(shí)要注意不等式的方向,必要的時(shí)候還是要討論。要看清是求分離后函數(shù)的最大值還是最小值,否則容易搞錯(cuò)。分類要結(jié)合條件看,不能拋開(kāi)大前提自己胡搞一套。最后,這類題還需要一定的不等式知識(shí),比如均值不等式,一些高等數(shù)學(xué)的不等數(shù)等等。這就需要我們有足夠的知識(shí)儲(chǔ)備,這樣做起這樣的題才能更有效率。(4)構(gòu)造新函數(shù)對(duì)新函數(shù)進(jìn)行分析這類題目題型看似復(fù)雜,但其實(shí)就是在上述問(wèn)題之上多了一個(gè)步驟,就是將上述的函數(shù)轉(zhuǎn)化為了另一個(gè)函數(shù),并沒(méi)有本質(zhì)的區(qū)別,所以這里不再贅述。(5)零點(diǎn)問(wèn)題這類題目在選擇填空中更容易出現(xiàn),因?yàn)檫@類問(wèn)題雖然不難,但要求學(xué)生對(duì)與極值和最值問(wèn)題有更好的了解,它需要我們結(jié)合零點(diǎn),極大值極小值等方面綜合考慮,所以
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 西葫蘆的種植課程設(shè)計(jì)
- 認(rèn)識(shí)電吉他教學(xué)課程設(shè)計(jì)
- 兩人開(kāi)店合同范例
- 橋梁道路咨詢合同范例
- 工程購(gòu)銷合同范例表格
- 精裝房公寓合同范例
- 泡菜工廠采購(gòu)合同范例
- 合同錄入系統(tǒng)流程3篇
- 倉(cāng)儲(chǔ)互誠(chéng)合同協(xié)議示范3篇
- 全年采購(gòu)合同糾紛處理3篇
- 2024年12123交管學(xué)法減分考試題庫(kù)及答案
- 康養(yǎng)醫(yī)療商業(yè)計(jì)劃書
- 2024年濟(jì)寧能源發(fā)展集團(tuán)有限公司招聘筆試沖刺題(帶答案解析)
- TSG R5002-2013 壓力容器使用管理規(guī)則
- 信用卡中心委外催收 投標(biāo)方案(技術(shù)方案)
- MOOC 天氣學(xué)-國(guó)防科技大學(xué) 中國(guó)大學(xué)慕課答案
- 《旅游財(cái)務(wù)管理》課件-2財(cái)務(wù)管理及其目標(biāo)
- 汽車品牌文化(吉林聯(lián)盟)智慧樹(shù)知到期末考試答案2024年
- 基于ECharts的數(shù)據(jù)可視化應(yīng)用
- 海洋學(xué)海上實(shí)踐教學(xué)智慧樹(shù)知到期末考試答案2024年
- JTJ034-2000 公路路面基層施工技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論