版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、會計學(xué)1 直線與圓的位置關(guān)系第課時切線長定理直線與圓的位置關(guān)系第課時切線長定理 如圖,紙上有一如圖,紙上有一 O ,PA為為 O的一條的一條 切線,沿著直線切線,沿著直線PO對折,設(shè)圓上與點對折,設(shè)圓上與點A 重合的點為重合的點為B。 1.OB是是 O的一條半徑嗎?的一條半徑嗎? 2.PB是是 O的切線嗎?的切線嗎? 3.PA、PB有何關(guān)系?有何關(guān)系? 4.APO和和BPO有何關(guān)系?有何關(guān)系? 數(shù)學(xué)探數(shù)學(xué)探 究究 P A O B 問題:問題: 第1頁/共18頁 經(jīng)過圓外一點作圓的切線,這點和切點之間的線經(jīng)過圓外一點作圓的切線,這點和切點之間的線 段的長叫做段的長叫做切線長。切線長。 數(shù)學(xué)探數(shù)學(xué)
2、探 究究 O B P A 切線長和切線的區(qū)別和聯(lián)系切線長和切線的區(qū)別和聯(lián)系: : 第2頁/共18頁 已知:已知: 求證:求證: 如圖,如圖,P P為為 O O外一點,外一點,PAPA、PBPB為為 O O的切線,的切線,A A、B B為切點,連結(jié)為切點,連結(jié)POPO BPOAPOPBPA, 切線長定理切線長定理 從從 圓外一點可以引圓外一點可以引 圓的兩條切線,圓的兩條切線, 它們的切線長相它們的切線長相 等,這一點和圓等,這一點和圓 心的連線平分兩心的連線平分兩 條切線的夾角。條切線的夾角。 O B P A 第3頁/共18頁 1 1、判斷、判斷 (1 1)過任意一點總可以作圓的兩條切線()過
3、任意一點總可以作圓的兩條切線( ) (2 2)從圓外一點引圓的兩條切線,它們的長相等)從圓外一點引圓的兩條切線,它們的長相等 。 練習(xí)練習(xí) 2 2、如圖、如圖PAPA、PBPB切圓于切圓于A A、B B兩點,兩點, 連結(jié)連結(jié)POPO,則,則 度。度。 50APB APO P B O A 25 第4頁/共18頁 3、如圖,如圖,PA、PB、DE分別切分別切 O于于A、B、C ,DE分別交分別交PA,PB于于D、E,已知,已知P到到 O的切的切 線長為線長為8CM,則,則 PDE的周長為(的周長為( ) A A A 16cm D 8cmC 12cm B 14cm D C B E A A P 第5頁
4、/共18頁 思考:當(dāng)切點思考:當(dāng)切點F在弧在弧AB上運動時,問上運動時,問PED 的周長、的周長、DOE的度數(shù)是否發(fā)生變化,請說的度數(shù)是否發(fā)生變化,請說 明理由。明理由。 F O E D P B A 第6頁/共18頁 數(shù)學(xué)探數(shù)學(xué)探 究究 O B P A 思考:思考:連結(jié)連結(jié)AB,則,則AB與與PO有怎樣的位置關(guān)系?有怎樣的位置關(guān)系? 為什么?為什么? 你還能得出什么結(jié)論?你還能得出什么結(jié)論? E E 第7頁/共18頁 切線長定理的基本圖形的研究 PA、PB是 O的兩條切線,A、B為切點,直線OP交于 O于點D、E,交AB于C。 B A P O C E D (1)寫出圖中所有的垂直關(guān)系 OAPA
5、,OB PB,AB OP (3)寫出圖中所有的全等三角形 AOP BOP, AOC BOC, ACP BCP (4)寫出圖中相等的圓弧 (5)寫出圖中所有的等腰三角形 ABP, AOB (6)若PA=4、PD=2,求半徑OA (2)寫出圖中與OAC相等的角 OAC=OBC=APC=BPC 第8頁/共18頁 例例1、如圖,、如圖,PA、PB是是 O的切線,的切線,A、B為為 切點,切點,OAB30 (1)求)求APB的度數(shù);的度數(shù); (2)當(dāng))當(dāng)OA3時,求時,求AP的長的長 P B A O 第9頁/共18頁 (2)已知)已知OA=3cm,OP=6cm,則,則APB= P A BC O 60 (
6、4)OP交交 O于于M,則,則 , M 牛刀小試牛刀小試 (3)若)若P=70,則,則AOB= 110 (1)若)若PA=4、PM=2,求圓,求圓O的半徑的半徑OA OA=3 第10頁/共18頁 。 P B A O 反思:在解決有關(guān) 圓的切線長的問題 時,往往需要我們 構(gòu)建基本圖形。 (3)連結(jié)圓心和圓外一點)連結(jié)圓心和圓外一點 (2)連結(jié)兩切點)連結(jié)兩切點 (1)分別連結(jié)圓心和切點)分別連結(jié)圓心和切點 切線長定理為證明切線長定理為證明 線段相等,角相等,線段相等,角相等, 弧相等,垂直關(guān)系弧相等,垂直關(guān)系提提 供了理論依據(jù)。必須供了理論依據(jù)。必須 掌握并能靈活應(yīng)用。掌握并能靈活應(yīng)用。 第11
7、頁/共18頁 AB C D EO 2 1 例2 如圖,已知:在如圖,已知:在ABC中,中,B90,O是是 AB上一點,以上一點,以O(shè)為圓心,為圓心,OB為半徑的圓交為半徑的圓交 AB于點于點E,切,切AC于點于點D。求證:。求證:DEOC 證明:連接證明:連接 ,為,為 的半徑的半徑 是是 的切線的切線 C是是 的切線,是切點的切線,是切點 , 是是 的直徑的直徑 ,即,即 第12頁/共18頁 D L M N A B C O P 證明:由切線長定理得證明:由切線長定理得 AL=APAL=AP,LB=MB,NC=MCLB=MB,NC=MC , DN=DPDN=DP AL+LB+NC+DN=AP+
8、MBAL+LB+NC+DN=AP+MB +MC+DP+MC+DP 即即 AB+CD=AD+BCAB+CD=AD+BC 補充:補充:圓的外切四邊形的兩組對邊的和相等圓的外切四邊形的兩組對邊的和相等 第13頁/共18頁 A O B C 2、試一試:、試一試:如圖如圖1,一個圓球放置在,一個圓球放置在V形架中形架中 。圖。圖2是它的平面示意圖,是它的平面示意圖,CA和和CB都是都是 O的的 切線,切點分別是切線,切點分別是A、B。如果。如果 O的半徑為的半徑為 cm,且,且AB=6cm,求,求ACB。 32 第14頁/共18頁 1.切線長定理切線長定理 從圓外一點引圓的兩條切線,它們的從圓外一點引圓的兩條切線,它們的 切線長相等,圓心和這一點的連線平分兩條切線的夾切線長相等,圓心和這一點的連線平分兩條切線的夾 角。角。 小小 結(jié):結(jié): A P O 。 B EC D PA、PB分別切分別切 O于于A、B PA = PB ,OPA=OPB OP垂直平分垂直平分AB 切線長定理為證明切線長定理為證明線段相等,角線段相等,角 相等,弧相等,垂直關(guān)系相等,弧相等,垂直關(guān)系提供了理論提供了理論
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025合同模板學(xué)校食堂承包經(jīng)營合同范本
- Unit2 He's cool(說課稿)2023-2024學(xué)年外研版(三起)四年級下冊
- 2025合同模板工程的變更范本
- 2025江蘇:安全責(zé)任寫進集體合同模板范本
- Unit1 School(說課稿)-2024-2025人教版(新起點)英語一年級上冊
- 2023七年級語文上冊 第四單元 綜合性學(xué)習(xí) 少年正是讀書時說課稿 新人教版
- Unit5 I'm cleaning my room(說課稿)-2023-2024學(xué)年人教精通版英語五年級下冊001
- 2024年九年級語文下冊 第二單元 第5課 孔乙己說課稿 新人教版
- 2024-2025學(xué)年高中化學(xué)下學(xué)期第20周 常見氣體的制備說課稿
- Unit 1 people of achievement Reading for writing 說課稿-2024-2025學(xué)年高中英語人教版(2019)選擇性必修第一冊
- 英語經(jīng)典口語1000句
- 進模模具設(shè)計
- 完整,滬教版小學(xué)四年級英語上冊單詞表
- 2021年高考化學(xué)真題和模擬題分類匯編專題20工業(yè)流程題含解析
- 2023年北京市高考作文評分標(biāo)準(zhǔn)及優(yōu)秀、滿分作文
- 2023年大唐尿素投標(biāo)文件
- 《鋼鐵是怎樣煉成的》名著閱讀(精講課件) 初中語文名著導(dǎo)讀
- 縮窄性心包炎課件
- 《工程電磁場》配套教學(xué)課件
- 職位管理手冊
- 東南大學(xué) 固體物理課件
評論
0/150
提交評論