太陽能逆變器中IGBT和MOSFET技術(shù)解析_第1頁
太陽能逆變器中IGBT和MOSFET技術(shù)解析_第2頁
太陽能逆變器中IGBT和MOSFET技術(shù)解析_第3頁
太陽能逆變器中IGBT和MOSFET技術(shù)解析_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、太陽能逆變器中IGBT和MOSFET技術(shù)解析(1)2014-09-2320:30:35?來源:互聯(lián)網(wǎng)?關(guān)鍵字:太陽能逆變器IGBTMOSFET發(fā)展逆變器技術(shù)是太陽能應(yīng)用提出的要求,本文介紹了太陽能逆變器的原理及架構(gòu),著重介紹了 IGBT和MOSFE技術(shù),實現(xiàn)智能控制是發(fā)展 太陽能逆變器技術(shù)的關(guān)鍵。一、太陽能對逆變器的要求通過太陽能光伏技術(shù)將太陽輻射轉(zhuǎn)換成電能是現(xiàn)在市面上最有效也是最具發(fā)展?jié)摿Φ目稍偕茉醇夹g(shù)。現(xiàn)在,普通太陽能光伏系統(tǒng)都是由許多緊密相連的太陽能電池板組成。這些電池板先分 組串聯(lián),再將不同的串聯(lián)電池組并聯(lián)起來形成電池陣列。目前我國光伏發(fā)電系統(tǒng)主要是直流系統(tǒng),即將太陽電池發(fā)出的電能給

2、蓄電池充電,而蓄電池直接給負(fù)載供電,如我國西北地區(qū)使用較多的太陽能戶用照明系統(tǒng)以及遠(yuǎn)離電網(wǎng)的微波站供電系統(tǒng)均 為直流系統(tǒng)。此類系統(tǒng)結(jié)構(gòu)簡單,成本低廉,但由于負(fù)載直流電壓的不同(如12 V、24 V、48 V等),很難實現(xiàn)系統(tǒng)的標(biāo)準(zhǔn)化和兼容性,特別是民用電力,由于大多為交流負(fù)載,以直流電力供電的光伏 電源很難作為商品進(jìn)入市場。光伏發(fā)電最終將實現(xiàn)并網(wǎng)運(yùn)行,這就必須采用成熟的市場模式,今后 交流光伏發(fā)電系統(tǒng)必將成為光伏發(fā)電的主流。太陽能逆變器是一種功率電子電路,能把太陽能電池板的直流電壓轉(zhuǎn)換為交流電壓來驅(qū)動家用電器、照明及電機(jī)工具等交流負(fù)載,是整個太陽能發(fā)電系統(tǒng)的關(guān)鍵組件。逆變器有兩個基本功能: 一

3、方面是為完成 DC/AC轉(zhuǎn)換的電流連接到電網(wǎng),另一方面是找出最佳的操作點以優(yōu)化太陽能光伏系 統(tǒng)的效率。對于特定的太陽光輻射、溫度及電池類型,太陽能光伏系統(tǒng)都相應(yīng)有唯一的最佳電壓及 電流,從而使光伏系統(tǒng)產(chǎn)生最大的能量。因此,在太陽能應(yīng)用中對逆變器必須滿足以下基本要求:1. 要求具有較高的效率。由于目前太陽電池的價格偏高,為了最大限度地利用太陽電池,提高 系統(tǒng)效率,必須設(shè)法提高逆變器的效率。2. 要求具有較高的可靠性。目前光伏發(fā)電系統(tǒng)主要用于邊遠(yuǎn)地區(qū),許多電站無人值守和維護(hù), 這就要求逆變器具有合理的電路結(jié)構(gòu),嚴(yán)格的元器件篩選,并要求逆變器具備各種保護(hù)功能,如輸 入直流極性接反保護(hù),交流輸出短路保

4、護(hù),過熱、過載保護(hù)等。3. 要求直流輸入電壓有較寬的適應(yīng)范圍,由于太陽電池的端電壓隨負(fù)載和日照強(qiáng)度而變化,蓄 電池雖然對太陽電池的電壓具有重要作用,但由于蓄電池的電壓隨蓄電池剩余容量和內(nèi)阻的變化而 波動,特別是當(dāng)蓄電池老化時其端電壓的變化范圍很大,如12V蓄電池,其端電壓可在1 0V 16V之間變化,這就要求逆變器必須在較大的直流輸入電壓范圍內(nèi)保證正常工作,并保證交流輸 出電壓的穩(wěn)定。4. 在中、大容量的光伏發(fā)電系統(tǒng)中,逆變電源的輸出應(yīng)為失真度較小的正弦波。這是由于在中、大容量系統(tǒng)中,若采用方波供電,則輸出將含有較多的諧波分量,高次諧波將產(chǎn)生附加損耗,許多光伏發(fā)電系統(tǒng)的負(fù)載為通信或儀表設(shè)備,這

5、些設(shè)備對電網(wǎng)品質(zhì)有較高的要求,當(dāng)中、大容量的光伏 發(fā)電系統(tǒng)并網(wǎng)運(yùn)行時,為避免與公共電網(wǎng)的電力污染,也要求逆變器輸出正弦波電流。二、太陽能逆變器的原理及架構(gòu)通常把交流電能變換成直流電能的過程稱之為整流,相控整流是最常見的交-直流變換過程;而把直流電能變換成交流電能的過程稱之為逆變,它是整流的逆過程。在逆變電路中,按照負(fù)載性 質(zhì)的不同,逆變分為有源逆變和無源逆變。如果把該電路的交流側(cè)接到交流電源上,把直流電能經(jīng) 過直-交流變換,逆變成與交流電源同頻率的交流電返送到電網(wǎng)上去,稱作有源逆變。相應(yīng)的裝置 稱為有源逆變器,控制角大于90。的相控整流器為常見的有源逆變器。而把直流電能變換為交流電能,直接向非

6、電源負(fù)載供電的電路,稱之為無源逆變電路,又稱為變頻器。逆變器類型有他勵逆變器、自勵逆變器、脈寬調(diào)制(PWM型逆變器。其中他勵逆變器需要外部交流電壓源,給晶閘管提供整流電壓。他勵逆變器主要應(yīng)用在大功率并網(wǎng)情況下;對于功率低于 1MW勺光伏發(fā)電系統(tǒng),主要采用自勵逆變器方式。自勵逆變器不需要外部交流電壓源,整流電壓由 逆變器的一部分儲能元件(比如電容)來提供或者通過增加待關(guān)斷整流閥(像MOSFE或IGBT)的電阻值來實現(xiàn)。輸出電壓被脈沖調(diào)制的自勵逆變器被稱為脈沖逆變器。這種逆變器通過增加周期內(nèi) 脈沖的切換次數(shù),來降低電壓、電流的諧波含量;諧波含量與脈沖切換次數(shù)呈正比。目前,并網(wǎng)逆 變器的輸出控制模式

7、主要有兩種:電壓型控制模式和電流型控制模式。電壓型控制模式的原理是以Z1 r7輸出電壓作為受控量,系統(tǒng)輸出和電網(wǎng)電壓同頻同相的電壓信號,整個系統(tǒng)相當(dāng)于一個內(nèi)阻很小的 受控電壓源;電流型控制模式的原理則是以輸出電感電流作為受控目標(biāo),系統(tǒng)輸出和電網(wǎng)電壓同頻 同相的電流信號,整個系統(tǒng)相當(dāng)于一個內(nèi)阻較大的受控電流源。目前,太陽能逆變器已有多種拓?fù)浣Y(jié)構(gòu),最常見的是用于單相的半橋、全橋和Heric ( Sun ways專利)逆變器,以及用于三相的六脈沖橋和中點鉗位(NPC逆變器。太陽能逆變器的典型架構(gòu)一般采用四個開關(guān)的全橋拓?fù)洌鐖D1所示。太陽能 電池板圖1全橋拓?fù)涫疽鈭D在圖1中,Q1和Q3被指定為高壓側(cè)

8、IGBT, Q2和Q4則是低壓側(cè)IGBT。該逆變器用于在其目標(biāo)市場的頻率和電壓條件下,產(chǎn)生單相位正弦電壓波形。有些逆變器用于連接凈計量效益電網(wǎng)的住宅安裝,這就是其中一個目標(biāo) 應(yīng)用市場,此項應(yīng)用要求逆變器提供低諧波交流正弦電壓,讓力可注入電網(wǎng)中。實質(zhì)上,為保持諧 波分量低和功率損耗最小,逆變器的高壓端IGBT采用脈寬調(diào)制(PWM,低壓端IGBT則以60Hz頻率變換電流方向。通過讓高壓端IGBT使用20kHz或20kHz以上的PWM頻率和50/60HZ調(diào)制方案,輸出電感L1和L2在實例中可以做得很小,并且照樣能對諧波分量進(jìn)行高效濾波。與快速和標(biāo)準(zhǔn)速 度的平面器件相比,開關(guān)速度為20kHz的超快速溝

9、道型IGBT可以提供最低的總導(dǎo)通損耗和開關(guān)功率損耗。同樣,對于低壓端開關(guān)電路,工作在60Hz的標(biāo)準(zhǔn)速度IGBT可以提供最低的功率損耗。這個設(shè)計中的開關(guān)技術(shù)具有如下優(yōu)勢:通過允許高壓端和低壓端IGBT獨立優(yōu)化實現(xiàn)很高的效率;高壓端、同封裝的軟恢復(fù)二極管沒有續(xù)流時間,從而消除了不必要的開關(guān)損耗;低壓端IGBT的開關(guān)頻率只有60Hz,因此導(dǎo)通損耗是這些IGBT的主要因素;沒有交叉導(dǎo)通,因為任何時間點的開關(guān) 都發(fā)生在對角的兩個器件上(Q1和Q4或Q2和Q3);不存在總線直通的可能性,因為橋的同一邊上的IGBT永遠(yuǎn)不可能以互補(bǔ)方式開關(guān);跨接低壓端IGBT的同封裝、超快速、軟恢復(fù)二極管經(jīng)過優(yōu)I 1 . -

10、1 化可以使續(xù)流和反向恢復(fù)期間的損耗達(dá)到最小。| I 三、IGBT 抑或 MOSFET!IJ / 7, I1在太陽能轉(zhuǎn)換過程中,有各種先進(jìn)的功率器件可以使用,比如MOSFE、T雙極結(jié)晶體管(BJT)和IGBT。為取得最佳的轉(zhuǎn)換效率和性能,為太陽能逆變器選擇正確的功率晶體管極具挑戰(zhàn)性,而且非常耗時。多年來的研究表明,IGBT可以比其它功率器件提供更多的優(yōu)勢,其中包括更強(qiáng)的電流處理能力、用電壓(而不是電流)方便地實現(xiàn)柵極控制,以及在封裝內(nèi)集成超快速恢復(fù)二極管實現(xiàn)更快的關(guān)斷 時間。IGBT是一種少數(shù)載流子器件,它的關(guān)斷時間取決于少數(shù)載流子重新組合的速度,因此,隨著 最近工藝技術(shù)和器件結(jié)構(gòu)的改進(jìn),它的

11、開關(guān)特性已得到顯著增強(qiáng)。IGBT基本上是具備金屬門氧化物門結(jié)構(gòu)的雙極型晶體管(BJT)。這種設(shè)計讓IGBT的柵極可以像MOSFE一樣,以電壓代替電流來控制開關(guān)。作為一種BJT,IGBT的電流處理能力比 MOSFE更高。同時,IGBT亦如BJT一樣是一種少數(shù)載體元件。這意味著IGBT關(guān)閉的速度是由少數(shù)載體復(fù)合的速度快慢來決定。此外,IGBT的關(guān)閉時間與它的集極-射極飽和電壓(Vce (on)成反比(如圖2所 示)。以圖2為例,若IGBT擁有相同的體積和技術(shù),一個超速IGBT比一個標(biāo)準(zhǔn)速度的IGBT擁有更高的Vce (on)。然而,超速IGBT的關(guān)閉速度卻比標(biāo)準(zhǔn)IGBT快得多。圖2反映的這種關(guān)系,

12、是通 過控制IGBT的少數(shù)載體復(fù)合率的使用周期以影響關(guān)閉時間來實現(xiàn)的。一般說,因IGBT的電流更大(是MOSFET勺兩倍多),所以采用IGBT方案的成本比采用 MOSFET 的成本低。除成本方面的考慮外,器件性能可由功率損耗表度,而功率損耗可分為:導(dǎo)通和開關(guān)兩 類。作為以少數(shù)載流子為基礎(chǔ)的器件,在大電流下,IGBT具有更低的導(dǎo)通電壓,也就意味著更低的導(dǎo)通損耗。但 MOSFET勺開關(guān)速度更快,所以開關(guān)損耗比IGBT低。因此對于要求更低開關(guān)頻率且更大電流的應(yīng)用來說,選擇IGBT更為適合而且具備更低成本優(yōu)勢。另一方面,MOSFE有能力滿足高頻、小電流應(yīng)用,特別是那些開關(guān)頻率在100kHz以上的能量逆

13、變器模塊的需要。雖然從器件成本角度看,MOSFE比IGBT貴,但其處理更高開關(guān)頻率的能力將簡化輸出濾波器的磁設(shè)計并將顯著縮 小輸出電感體積。基于上述原因,更多的制造商因此傾向于在中高水平的能量逆變器中采用IGBT。而據(jù)Microsemi公司介紹,該公司生產(chǎn)的 MOS8IGBT在靜態(tài)和動態(tài)測試(最小化的總體功率損耗) 方面的優(yōu)化性能可出色勝任這些應(yīng)用的要求。另一方面,即便MOSFE 的成本是個主要考量,但為實行一個更優(yōu)方案,也應(yīng)重新審視采用MOSFET勺潛力,諸如 Microsemi的MOS7/MOS8MOSF所具備的領(lǐng)先特性就非常適合太陽能逆變器的設(shè)計。四、太陽能逆變器的智能控制設(shè)計太陽能逆變

14、器時要考慮的兩個關(guān)鍵因素是效率和諧波失真。效率可分成兩個部分:太陽能 的效率和逆變器的效率。逆變器的效率在很大程度上取決于設(shè)計使用的外部元件,而不是控制器; 而太陽能的效率與控制器如何控制太陽能電池板陣列有關(guān)。每個太陽能電池板陣列的最大工作功率在很大程度上取決于陣列的溫度和光照。MCI必須控制太陽能電池板陣列的輸出負(fù)載,以使陣列的工作功率最大。由于這不是一個數(shù)學(xué)密集型算法,因此可使用低成本MCI來完成任務(wù)。目前,大多數(shù)太陽能逆變器只能從太陽能電池板的某個最佳位置對電池板的整體效率進(jìn)行優(yōu) 化。這種優(yōu)化方法嚴(yán)重制約了太陽能發(fā)電系統(tǒng)的效率。如果光伏系統(tǒng)在非最佳電壓及電流水平下運(yùn) 行,系統(tǒng)的效率就非常低,白白浪費(fèi)采集太陽能的良機(jī)。在光伏系統(tǒng)中,太陽能電池板是由多個串1 I, / 聯(lián)組并聯(lián)后形成的。就像節(jié)日燈飾一樣,假如串聯(lián)中的任何某個電池發(fā)生故障,就會導(dǎo)致整個電池 組失效。此外,當(dāng)有局部陰影或碎礫等遮蔽光伏系統(tǒng)時,這種情況也會發(fā)生。./ I”,J 為了解決上述問題,目前太陽能電池板都集成了旁路二極管,從而使電流可以繞過被遮蔽的失 效電池板部份。啟動二極管后,它們可將電流重新路由,即改道繞過失效電池串上。這樣一來,不 僅浪費(fèi)了受遮蔽電池板的供電潛能,而且會降低整個電池組的總電壓?;谶x取

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論