我國農(nóng)民收入影響因素的回歸分析_第1頁
我國農(nóng)民收入影響因素的回歸分析_第2頁
我國農(nóng)民收入影響因素的回歸分析_第3頁
我國農(nóng)民收入影響因素的回歸分析_第4頁
我國農(nóng)民收入影響因素的回歸分析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、我國農(nóng)民收入影響因素的回歸分析自改革開放以來 , 雖然中國經(jīng)濟平均增長速度為 9.5 % , 但二元經(jīng)濟結(jié)構(gòu)給 經(jīng)濟發(fā)展帶來的問題仍然很突出。農(nóng)村人口占了中國總?cè)丝诘?70 %多, 農(nóng)業(yè)產(chǎn)業(yè) 結(jié)構(gòu)不合理 ,經(jīng)濟不發(fā)達 ,以及農(nóng)民收入增長緩慢等問題勢必成為我國經(jīng)濟持續(xù) 穩(wěn)定增長的障礙。正確有效地解決好“三農(nóng)”問題是中國經(jīng)濟走出困境, 實現(xiàn)長期穩(wěn)定增長的關(guān)鍵。其中 ,農(nóng)民收入增長是核心 , 也是解決“三農(nóng)”問題的關(guān)鍵。 本文力圖應(yīng)用適當?shù)亩嘣€性回歸模型 , 對有關(guān)農(nóng)民收入的歷史數(shù)據(jù)和現(xiàn)狀進行 分析,尋找其根源 ,探討影響農(nóng)民收入的主要因素 ,并在此基礎(chǔ)上對如何增加農(nóng)民 收入提出相應(yīng)的政策建議。農(nóng)

2、民收入水平的度量, 通常采用人均純收入指標。 影響農(nóng)民收入增長的因 素是多方面的, 既有結(jié)構(gòu)性矛盾因素, 又有體制性障礙因素。 但可以歸納為以下 幾個方面: 一是農(nóng)產(chǎn)品收購價格水平。 目前農(nóng)業(yè)收入仍是中西部地區(qū)農(nóng)民收入的 主要來源。 二是農(nóng)業(yè)剩余勞動力轉(zhuǎn)移水平。 中國的農(nóng)業(yè)目前仍以農(nóng)戶分散經(jīng)營為 主,農(nóng)業(yè)比較效益低, 盡快地把農(nóng)業(yè)剩余勞動力轉(zhuǎn)移出去是有效改善農(nóng)民收入狀 況的重要因素。三是城市化、工業(yè)化水平。中國多數(shù)地區(qū)城市化、工業(yè)化水平落 后于世界平均水平, 這種狀況極大地影響了農(nóng)民收入的增長。 四是農(nóng)業(yè)產(chǎn)業(yè)結(jié)構(gòu) 狀況。農(nóng)林牧漁業(yè)對農(nóng)民收入增長貢獻率是不同的。隨著我國“入世”后農(nóng)產(chǎn)品 市場的開

3、放和人民生活水平的提高、 農(nóng)產(chǎn)品需求市場的改變, 農(nóng)業(yè)結(jié)構(gòu)狀況直接 影響著農(nóng)民收入的增長。 五是農(nóng)業(yè)投入水平。 農(nóng)民收入與財政農(nóng)業(yè)支出、 農(nóng)村集 體投入、農(nóng)戶個人投入以及信貸投入都有顯著的正相關(guān)關(guān)系。 農(nóng)業(yè)投入是農(nóng)民收 入增長的重要保證。 但考慮到農(nóng)業(yè)投入主體的多元性, 既有國家、 集體和農(nóng)戶的 投入,又有銀行、企業(yè)和外資的投入,考慮到復(fù)雜性和可行性,所以對農(nóng)業(yè)投入 與農(nóng)民收入,本文暫不作討論。因此,以全國為例,把農(nóng)民收入與各影響因素關(guān) 系進行線性回歸分析,并建立數(shù)學(xué)模型。一、計量經(jīng)濟模型分析( 一 ) 、數(shù)據(jù)搜集根據(jù)以上分析,我們在影響農(nóng)民收入因素中引入 7個解釋變量。即: x2 -財政用于

4、農(nóng)業(yè)的支出的比重,X3 -第二、三產(chǎn)業(yè)從業(yè)人數(shù)占全社會從業(yè)人數(shù)的比重,X4 -非農(nóng)村人口比重,X5 -鄉(xiāng)村從業(yè)人員占農(nóng)村人口的比重,X6 -農(nóng)業(yè)總產(chǎn)值占農(nóng)林牧總產(chǎn)值的比重,X7 -農(nóng)作物播種面積,X8 -農(nóng)村用電量。yx2x3x4x5x6x7x8年份:78年可比價比重%比重比重千公頃億千瓦時1986133.6013.4329.5017.9236.0179.99150104.07253.101987137.6312.2031.3019.3938.6275.63146379.53320.801988 J147.867.6637.60 :23.7145.90P 69.25143625.87508.9

5、01989196.769.4239.9026.2149.2362.75146553.93790.501990220.539.9839.9026.4149.9364.66148362.27844.501991223.2510.2640.30 :26.9450.92:63.09149585.80963.201992 J233.1910.0541.50 :27.4651.53:61.51149007.101106.901993265.679.4943.6027.9951.8660.07147740.701244.901994 335.169.2045.7028.5152.12:58.22148240

6、.601473.901995411.298.4347.80:29.0452.41:58.43149879.301655.701996460.688.8249.5030.4853.2360.57152380.601812.701997477.968.3050.1031.9154.9358.23153969.201980.101998474.0210.6950.20 :33.3555.84:58.03155705.702042.201999466.808.2349.9034.7857.1657.53156372.812173.452000466.167.7550.0036.2259.3355.68

7、156299.852421.302001;469.80:7.7150.00 :37.6660.62:55.24155707.862610.782002468.957.1750.0039.0962.0254.51154635.512993.402003476.24p.1250.9040.5363.7250.08152414.963432.922004499.399.6753.10 :41.7665.64:50.05153552.553933.032005 1521.207.2255.2042.9967.5949.72155487.734375.70資料來源中國統(tǒng)計年鑒 2006。(二)、計量經(jīng)濟

8、學(xué)模型建立我們設(shè)定模型為下面所示的形式:Y = 12X23X34X45X56X67X7:8乂8 Ut利用Eviews軟件進行最小二乘估計,估計結(jié)果如下表所示:Depe ndent Variable: YMethod: Least SquaresDate: 06/08/07 Time: 21:51Sample: 1986 2004In cluded observati ons: 19VariableCoefficie ntStd. Errort-StatisticProb.-1102.373375.8283-2.9331840.0136X2-6.6353933.781349-1.7547690.

9、1071X318.229422.0666178.8208990.0000X42.4300398.3703370.2903160.7770X5-16.237375.894109-2.7548470.0187X6-2.1552082.770834-0.7778190.4531X70.0099620.0023284.2788100.0013X80.0633890.0212762.9793480.0125R-squared0.995823Mean depe ndent var345.5232Adjusted R-squared0.993165S.D.dependent var139.7117S.E.

10、of regressi on11.55028Akaike info criteri on8.026857Sum squared resid1467.498Schwarz criteri on8.424516Log likelihood-68.25514F-statistic374.6600Durbi n- Watson stat1.993270Prob(F-statistic)0.000000表1最小二乘估計結(jié)果回歸分析報告為:Y = -1102.373-6.6354焉 + 18.2294X3 +2.4300X36.2374X5 -2.1552X6 +0.0100X7 +0.0634X8SE

11、=375.833.78132.066618.370345.89412.77080.002330.02128t 二 -2.933-1.7558.820900.20316-2.755-0.7784.278812.97932 2R =0.995823 R =0.993165 Df =19 DW =1.99327 F =374.66、計量經(jīng)濟學(xué)檢驗(一)、多重共線性的檢驗及修正、檢驗多重共線性(a)、直觀法從“表1最小二乘估計結(jié)果”中可以看出,雖然模型的整體擬合的很好,但是x4 x6的t統(tǒng)計量并不顯著,所以可能存在多重共線性。(b)、相關(guān)系數(shù)矩陣從“表2相關(guān)系數(shù)矩陣”中可以看出,個個解釋變量之間的相關(guān)

12、程度較高,X2X3X4X5X6X7X8X21.000000-0.717662-0.695257-0.7313260.737028-0.332435-0.594699X3-0.7176621.0000000.9222860.935992-0.9457010.7422510.883804X4-0.6952570.9222861.0000000.986050-0.9377510.7539280.974675X5-0.7313260.9359920.9860501.000000-0.9747500.6874390.940436X60.737028-0.945701-0.937751-0.9747501

13、.000000-0.603539-0.887428X7-0.3324350.7422510.7539280.687439-0.6035391.0000000.742781X8-0.5946990.8838040.9746750.940436-0.8874280.7427811.000000表2相關(guān)系數(shù)矩陣所以應(yīng)該存在多重共線性。、多重共線性的修正一一逐步迭代法A、一元回歸Depe ndent Variable: YMethod: Least SquaresDate: 06/08/07 Time: 21:52Sample: 1986 2004In cluded observati ons: 19

14、VariableCoefficie ntStd. Errort-StatisticProb.C820.3133151.87125.4013740.0000X2-51.3783616.18923-3.1736140.0056R-squared0.372041Mean depe ndent var345.5232Adjusted R-squared0.335102S.D.dependent var139.7117S.E. of regressi on113.9227Akaike info criteri on12.40822Sum squared resid220632.4Schwarz crit

15、eri on12.50763Log likelihood-115.8781F-statistic10.07183Durbi n- Watson stat0.644400Prob(F-statistic)0.005554表3 y對x2的回歸結(jié)果Depe ndent Variable: YMethod: Least SquaresDate: 06/08/07 Time: 21:52Sample: 1986 2004In cluded observati ons: 19VariableCoefficie ntStd. Errort-StatisticProb.C-525.889164.11333-8

16、.2024920.0000X319.460311.41604313.742740.0000R-squared0.917421Mean depe ndent var345.5232Adjusted R-squared0.912563S.D.dependent var139.7117S.E. of regressi on41.31236Akaike info criteri on10.37950Sum squared resid29014.09Schwarz criteri on10.47892Log likelihood-96.60526F-statistic188.8628Durbi n- W

17、atson stat0.598139Prob(F-statistic)0.000000表4 y對x3的回歸結(jié)果Depe ndent Variable: YMethod: Least SquaresDate: 06/08/07 Time: 21:52Sample: 1986 2004In cluded observati ons: 19VariableCoefficie ntStd. Errort-StatisticProb.C-223.190569.92322-3.1919370.0053X418.650862.2422408.3179560.0000R-squared0.802758Mea

18、n depe ndent var345.5232Adjusted R-squared0.791155S.D.dependent var139.7117S.E. of regressi on63.84760Akaike info eriteri on11.25018Sum squared resid69300.77Sehwarz eriteri on11.34959Log likelihood-104.8767F-statistie69.18839Durbi n- Watson stat0.282182Prob(F-statistie)0.000000表5 y對x4的回歸結(jié)果Depe ndent

19、 Variable: YMethod: Least SquaresDate: 06/08/07Time: 21:52Sample: 1986 2004In eluded observati ons: 19VariableCoeffieie ntStd. Errort-StatistieProb.C-494.1440118.1449-4.1825260.0006X515.779782.1987117.1768320.0000R-squared0.751850Mean depe ndent var345.5232Adjusted R-squared0.737253S.D.dependent var

20、139.7117S.E. of regressi on71.61463Akaike info eriteri on11.47978Sum squared resid87187.14Sehwarz eriteri on11.57919Log likelihood-107.0579F-statistie51.50691Durbi n- Watson stat0.318959Prob(F-statistie)0.000002表6 y對x5的回歸結(jié)果Depe ndent Variable: YMethod: Least SquaresDate: 06/08/07Time: 21:52Sample: 1

21、986 2004In eluded observati ons: 19VariableCoeffieie ntStd. Errort-StatistieProb.C1288.009143.80888.9563950.0000X6-15.523982.351180-6.6026350.0000R-squared0.719448Mean depe ndent var345.5232Adjusted R-squared0.702945S.D.dependent var139.7117S.E. of regressi on76.14674Akaike info eriteri on11.60250Su

22、m squared resid98571.54Sehwarz eriteri on11.70192Log likelihood-108.2238F-statistie43.59479Durbi n- Watson stat0.395893Prob(F-statistie)0.000004表7 y對x6的回歸結(jié)果Depe ndent Variable: YMethod: Least SquaresDate: 06/08/07Time: 21:52Sample: 1986 2004In eluded observati ons: 19VariableCoefficie ntStd. Errort-

23、StatisticProb.C-4417.766681.1678-6.4855770.0000X70.0315280.0045076.9949430.0000R-squared0.742148Mean depe ndent var345.5232Adjusted R-squared0.726980S.D.dependent var139.7117S.E. of regressi on73.00119Akaike info criteri on11.51813Sum squared resid90595.96Schwarz criteri on11.61754Log likelihood-107

24、.4222F-statistic48.92923Durbi n- Watson stat0.572651Prob(F-statistic)0.000002表8 y對x7的回歸結(jié)果Depe ndent Variable: YMethod: Least SquaresDate: 06/08/07Time: 21:52Sample: 1986 2004In cluded observati ons: 19VariableCoefficie ntStd. Errort-StatisticProb.C140.162528.966164.8388350.0002X80.1198270.0145438.23

25、95030.0000R-squared0.799739Mean depe ndent var345.5232Adjusted R-squared0.787959S.D.dependent var139.7117S.E. of regressi on64.33424Akaike info criteri on11.26536Sum squared resid70361.21Schwarz criteri on11.36478Log likelihood-105.0209F-statistic67.88941Durbi n- Watson stat0.203711Prob(F-statistic)

26、0.000000表9 y對x8的回歸結(jié)果綜合比較表39的回歸結(jié)果,發(fā)現(xiàn)加入x3的回歸結(jié)果最好。以x3為基礎(chǔ)順次加入其他解釋變量,進行二元回歸,具體的回歸結(jié)果如下表1015所示:Depe ndent Variable: YMethod: Least SquaresDate: 06/08/07 Time: 21:53Sample: 1986 2004In cluded observati ons: 19VariableCoefficie ntStd. Errort-StatisticProb.C-754.4481149.1701-5.0576370.0001X321.788651.93268911

27、.273750.0000X213.450708.0127451.6786630.1126R-squared0.929787Mean depe ndent var345.5232Adjusted R-squared0.921010S.D.dependent var139.7117S.E. of regressi on39.26619Akaike info criteri on10.32254Sum squared resid24669.34Schwarz criteri on10.47167Log likelihood-95.06417F-statistic105.9385Durbi n- Wa

28、tson stat0.595954Prob(F-statistic)0.000000表10加入x2的回歸結(jié)果Depe ndent Variable: YMethod: Least SquaresDate: 06/08/07Time: 21:53Sample: 1986 2004In cluded observati ons: 19VariableCoefficie ntStd. Errort-StatisticProb.C-508.678175.73220-6.7168020.0000X317.882003.7521214.7658370.0002X41.7533513.8443050.456

29、0900.6545R-squared0.918481Mean depe ndent var345.5232Adjusted R-squared0.908291S.D.dependent var139.7117S.E. of regressi on42.30965Akaike info criteri on10.47185Sum squared resid28641.71Schwarz criteri on10.62097Log likelihood-96.48254F-statistic90.13613Durbi n- Watson stat0.596359Prob(F-statistic)0

30、.000000表11加入x4的回歸結(jié)果Depe ndent Variable: YMethod: Least SquaresDate: 06/08/07Time: 21:54Sample: 1986 2004In cluded observati ons: 19VariableCoefficie ntStd. Errort-StatisticProb.C-498.155067.21844-7.4109860.0000X323.975163.9671836.0433700.0000X5-4.3205663.553466-1.2158740.2417R-squared0.924405Mean de

31、pe ndent var345.5232Adjusted R-squared0.914956S.D.dependent var139.7117S.E. of regressi on40.74312Akaike info criteri on10.39639Sum squared resid26560.02Schwarz criteri on10.54551Log likelihood-95.76570F-statistic97.82772Durbi n- Watson stat0.607882Prob(F-statistic)0.000000表12 加入x5的回歸結(jié)果Depe ndent Va

32、riable: YMethod: Least SquaresDate: 06/08/07Time: 21:54Sample: 1986 2004In cluded observati ons: 19VariableCoefficie ntStd. Errort-StatisticProb.C-1600.965346.9265-4.6147090.0003X329.937683.5347538.4695280.0000X69.9801353.1841763.1342910.0064R-squared0.948835Mean depe ndent var345.5232Adjusted R-squ

33、ared0.942440S.D.dependent var139.7117S.E. of regressi on33.51927Akaike info eriteri on10.00606Sum squared resid17976.66Schwarz eriteri on10.15518Log likelihood-92.05754F-statistie148.3576Durbi n- Watson stat1.125188Prob(F-statistie)0.000000表13加入x6的回歸結(jié)果Depe ndent Variable: YMethod: Least SquaresDate:

34、 06/08/07Time: 21:54Sample: 1986 2004In eluded observati ons: 19VariableCoeffieie ntStd. Errort-StatistieProb.C-2153.028327.1248-6.5816730.0000X314.404971.35835510.604720.0000X70.0122680.0024475.0140150.0001R-squared0.967884Mean depe ndent var345.5232Adjusted R-squared0.963869S.D.dependent var139.71

35、17S.E. of regressi on26.55648Akaike info eriteri on9.540364Sum squared resid11283.94Sehwarz eriteri on9.689485Log likelihood-87.63345F-statistie241.0961Durbi n- Watson stat0.690413Prob(F-statistie)0.000000表14加入x7的回歸結(jié)果Depe ndent Variable: YMethod: Least SquaresDate: 06/08/07Time: 21:54Sample: 1986 20

36、04In eluded observati ons: 19VariableCoeffieie ntStd. Errort-StatistieProb.C-400.5635103.0301-3.8878320.0013X315.542712.9163585.3294930.0001X80.0292330.0192331.5199290.1480R-squared0.927840Mean depe ndent var345.5232Adjusted R-squared0.918820S.D.dependent var139.7117S.E. of regressi on39.80687Akaike

37、 info eriteri on10.34990Sum squared resid25353.40Sehwarz eriteri on10.49902Log likelihood-95.32401F-statistie102.8643Durbi n- Watson stat0.559772Prob(F-statistie)0.000000表15加入x8的回歸結(jié)果綜合表1015所示,加入x7的模型的R最大,以x3、x7為基礎(chǔ)順次加入其他解釋變量,進行三元回歸,具體回歸結(jié)果如下表 1620所示:Depe ndent Variable: YMethod: Least SquaresDate: 06/

38、08/07 Time: 21:55Sample: 1986 2004In cluded observati ons: 19VariableCoefficie ntStd. Errort-StatisticProb.C-2133.921340.6965-6.2634060.0000X314.960232.0946457.1421340.0000X70.0118430.0027864.2509080.0007X22.1952436.1704030.3557700.7270R-squared0.968153Mean depe ndent var345.5232Adjusted R-squared0.

39、961783S.D.dependent var139.7117S.E. of regressi on27.31242Akaike info criteri on9.637224Sum squared resid11189.52Schwarz criteri on9.836053Log likelihood-87.55363F-statistic151.9988Durbi n- Watson stat0.712258Prob(F-statistic)0.000000表16加入x2的回歸結(jié)果Depe ndent Variable: YMethod: Least SquaresDate: 06/08

40、/07Time: 21:55Sample: 1986 2004In cluded observati ons: 19VariableCoefficie ntStd. Errort-StatisticProb.C-2226.420353.4425-6.2992430.0000X315.667292.4431136.4128390.0000X70.0127030.0025894.9063730.0002X4-1.6013622.553294-0.6271750.5400R-squared0.968705Mean depe ndent var345.5232Adjusted R-squared0.9

41、62445S.D.dependent var139.7117S.E. of regressi on27.07472Akaike info criteri on9.619741Sum squared resid10995.60Schwarz criteri on9.818571Log likelihood-87.38754F-statistic154.7677Durbi n- Watson stat0.704178Prob(F-statistic)0.000000表17加入x4的回歸結(jié)果Depe ndent Variable: YMethod: Least SquaresDate: 06/08/

42、07Time: 21:55Sample: 1986 2004In cluded observati ons: 19VariableCoefficie ntStd. Errort-StatisticProb.C-2110.381306.2690-6.8906130.0000X318.601562.6173817.1069370.0000X70.0121390.0022855.3116650.0001X5-3.9648782.163262-1.8328230.0868R-squared0.973760Mean depe ndent var345.5232Adjusted R-squared0.96

43、8512S.D.dependent var139.7117S.E. of regressi on24.79152Akaike info criteri on9.443544Sum squared resid9219.289Schwarz criteri on9.642373Log likelihood-85.71367F-statistic185.5507Durbi n- Watson stat0.733972Prob(F-statistic)0.000000表18加入x5的回歸結(jié)果Depe ndent Variable: YMethod: Least SquaresDate: 06/08/0

44、7 Time: 21:55Sample: 1986 2004In cluded observati ons: 19VariableCoefficie ntStd. Errort-StatisticProb.C-2418.859323.7240-7.4719790.0000X320.998873.3971206.1813740.0000X70.0099200.0024953.9766600.0012X65.3591842.5719502.0837050.0547R-squared0.975093Mean depe ndent var345.5232Adjusted R-squared0.9701

45、12S.D.dependent var139.7117S.E. of regressi on24.15359Akaike info criteri on9.391407Sum squared resid8750.940Schwarz criteri on9.590236Log likelihood-85.21837F-statistic195.7489Durbi n- Watson stat1.084023Prob(F-statistic)0.000000表19加入x6的回歸結(jié)果Depe ndent Variable: YMethod: Least SquaresDate: 06/08/07

46、Time: 21:56Sample: 1986 2004In cluded observati ons: 19VariableCoefficie ntStd. Errort-StatisticProb.C-2013.355361.8657-5.5638180.0001X313.015782.0324206.4040780.0000X70.0116150.0025584.5403220.0004X80.0123750.0134160.9224010.3709R-squared0.969608Mean depe ndent var345.5232Adjusted R-squared0.963529

47、S.D.dependent var139.7117S.E. of regressi on26.68115Akaike info criteri on9.590455Sum squared resid10678.26Schwarz criteri on9.789285Log likelihood-87.10933F-statistic159.5158Durbi n- Watson stat0.672264Prob(F-statistie)0.000000表20 加入x8的回歸結(jié)果綜合上述表1620的回歸結(jié)果所示,其中加入x6的回歸結(jié)果最好,以 x3 x6x7為基礎(chǔ)一次加入其他解釋變量,作四元回歸

48、估計,估計結(jié)果如表2124所示:Depe ndent Variable: YMethod: Least SquaresDate: 06/08/07Time: 21:57Sample: 1986 2004In eluded observati ons: 19VariableCoeffieie ntStd. Errort-StatistieProb.C-2405.108339.7396-7.0792690.0000X321.268503.6997875.7485730.0001X65.3105432.6655691.9922730.0662X70.0096890.0027663.5033860.0035X21.3026055.6553900.2303300.8212R-squared0.975187Mean depe ndent var345.5232Adjusted R-squared0.968098S.D.dependent var139.7117S.E. of regressi on24.95411Akaike info

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論