版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第九篇平面解析幾何(必修2、選修21,六年新課標(biāo)全國(guó)卷試題分析,第1節(jié)直線與方程,知識(shí)鏈條完善,考點(diǎn)專項(xiàng)突破,易混易錯(cuò)辨析,知識(shí)鏈條完善 把散落的知識(shí)連起來,教材導(dǎo)讀】 1.任意一條直線都有傾斜角和斜率嗎? 提示:每一條直線都有唯一的傾斜角,但并不是每一條直線都存在斜率.傾斜角為90的直線斜率不存在. 2.直線的傾斜角越大,斜率k就越大,這種說法正確嗎,3.截距是距離嗎? 提示:直線在x(y)軸上的截距是直線與x(y)軸交點(diǎn)的橫(縱)坐標(biāo),所以截距是一個(gè)實(shí)數(shù),可正、可負(fù),也可為0,而不是距離. 4.應(yīng)用點(diǎn)到直線的距離和兩平行線間的距離時(shí)應(yīng)注意什么? 提示:(1)將方程化為最簡(jiǎn)的一般形式;(2)
2、利用兩平行線之間的距離公式時(shí),應(yīng)使兩平行線方程中x,y的系數(shù)分別對(duì)應(yīng)相等,知識(shí)梳理,1.直線的傾斜角與斜率 (1)直線的傾斜角 定義.當(dāng)直線l與x軸相交時(shí),我們?nèi)軸作為基準(zhǔn),x軸 與直線l 方向之間所成的角叫做直線l的傾斜角.當(dāng)直線l與x軸平行或重合時(shí),規(guī)定它的傾斜角為0. 范圍:傾斜角的范圍為 . (2)直線的斜率 定義.一條直線的傾斜角的 叫做這條直線的斜率,斜率常用小寫字母k表示,即k= ,傾斜角是90的直線沒有斜率,正向,向上,0,180,正切值,tan,2.直線方程的五種形式,y-y0=k(x-x0,y=kx+b,Ax+By+C=0,A,B不同時(shí)為0,3.兩條直線位置關(guān)系的判定,k
3、1k2=-1,2)若方程組無解,則l1與l2 ,此時(shí)l1l2; (3)若方程組有無數(shù)組解,則l1與l2重合,相交,無公共點(diǎn),重要結(jié)論】 1.常見的直線系方程 (1)過定點(diǎn)P(x0,y0)的直線系方程:A(x-x0)+B(y-y0)=0(A2+B20),還可以表示為y-y0=k(x-x0)(斜率不存在時(shí)可設(shè)為x=x0). (2)平行于直線Ax+By+C=0的直線系方程:Ax+By+=0(C). (3)垂直于直線Ax+By+C=0的直線系方程:Bx-Ay+=0. (4)過兩條已知直線A1x+B1y+C1=0,A2x+B2y+C2=0交點(diǎn)的直線系方程: A1x+B1y+C1+(A2x+B2y+C2)
4、=0(不包括直線A2x+B2y+C2=0,2.對(duì)稱問題 (1)中心對(duì)稱 點(diǎn)P(x0,y0)關(guān)于A(a,b)的對(duì)稱點(diǎn)為P(2a-x0,2b-y0),直線關(guān)于點(diǎn)的對(duì)稱問題可轉(zhuǎn)化為點(diǎn)關(guān)于點(diǎn)的對(duì)稱問題,夯基自測(cè),D,2.(2014高考福建卷)已知直線l過圓x2+(y-3)2=4的圓心,且與直線x+y+1=0垂直,則l的方程是( ) (A)x+y-2=0(B)x-y+2=0 (C)x+y-3=0(D)x-y+3=0,解析:依題意,得直線l過點(diǎn)(0,3),斜率為1,所以直線l的方程為y-3=x-0,即x-y+3=0.故選D,D,3.(2016濟(jì)南模擬)已知兩條直線y=ax-2和3x-(a+2)y+1=0互
5、相平行,則a等于( ) (A)1或-3(B)-1或3 (C)1或3 (D)-1或-3,A,4.(2016北京模擬)經(jīng)過兩條直線3x+4y-5=0和3x-4y-13=0的交點(diǎn),且斜率為2的直線方程是( ) (A)2x+y-7=0(B)2x-y-7=0 (C)2x+y+7=0(D)2x-y+7=0,B,5.已知點(diǎn)A(3,2)和B(-1,4)到直線ax+y+1=0的距離相等,則a的值為,考點(diǎn)專項(xiàng)突破 在講練中理解知識(shí),考點(diǎn)一,直線的傾斜角與斜率,答案: (1)B,反思?xì)w納 (1)已知直線方程求直線傾斜角范圍的一般步驟 求出斜率k的取值范圍(若斜率不存在,傾斜角為90). 利用正切函數(shù)的單調(diào)性,借助圖
6、象或單位圓確定傾斜角的取值范圍,考點(diǎn)二,求直線方程,例2】 ABC的三個(gè)頂點(diǎn)分別為A(-3,0),B(2,1),C(-2,3),求: (1)BC邊所在直線的方程; (2)BC邊上中線AD所在直線的方程; (3)BC邊的垂直平分線DE的方程,反思?xì)w納,1)求直線方程的常用方法有: 直接法:直接求出直線方程中的系數(shù),寫出直線方程; 待定系數(shù)法:先根據(jù)已知條件設(shè)出直線方程,再構(gòu)造關(guān)于系數(shù)的方程(組)求系數(shù),最后代入求出直線方程. (2)求直線方程時(shí),應(yīng)注意分類討論思想的應(yīng)用:如直線的斜率是否存在,直線在兩坐標(biāo)軸的截距是否為0等. (3)如果沒有特別要求,則求出的直線方程應(yīng)化為一般式Ax+By+C=0
7、,且A0,2)(2015長(zhǎng)沙模擬)已知點(diǎn)M是直線l:2x-y-4=0與x軸的交點(diǎn),把直線l繞點(diǎn)M逆時(shí)針方向旋轉(zhuǎn)45,得到的直線方程是() (A)3x+y-6=0(B)3x-y+6=0 (C)x+y-3=0(D)x-3y-2=0,兩直線的位置關(guān)系,考點(diǎn)三,2)(2016浙江名校聯(lián)考)已知直線l1:x+(a-2)y-2=0,l2:(a-2)x+ay-1=0,則“a=-1”是“l(fā)1l2”的() (A)充分不必要條件 (B)必要不充分條件 (C)充要條件 (D)既不充分也不必要條件,解析: (2)若a=-1,則l1:x-3y-2=0, l2:-3x-y-1=0, 顯然兩條直線垂直; 若l1l2,則(a
8、-2)+a(a-2)=0, 所以a=-1或a=2, 因此“a=-1”是“l(fā)1l2”的充分不必要條件.故選A,反思?xì)w納,充分掌握兩直線平行與垂直的條件是解決本類題的關(guān)鍵,對(duì)于斜率都存在且不重合的兩條直線l1和l2,l1l2k1=k2,l1l2 k1k2=-1.若有一條直線的斜率不存在,那么另一條直線的斜率是多少一定要特別注意,解析:(1)因?yàn)閮芍本€平行,所以有a(a-1)=2, 即a2-a-2=0,解得a=2或a=-1,答案: (1)2或-1(2)1或0,距離問題,考點(diǎn)四,反思?xì)w納,2)求兩點(diǎn)間的距離,關(guān)鍵是確定兩點(diǎn)的坐標(biāo),然后代入公式即可,一般用來判斷三角形的形狀等,考查角度2:點(diǎn)到直線的距離
9、公式及其應(yīng)用. 高考掃描:2010高考新課標(biāo)全國(guó)卷,2013高考新課標(biāo)全國(guó)卷,2014高考新課標(biāo)全國(guó)卷, 【例5】 (2015武漢調(diào)研)已知直線l經(jīng)過直線2x+y-5=0與x-2y=0的交點(diǎn). (1)若點(diǎn)A(5,0)到l的距離為3,求l的方程,2)求點(diǎn)A(5,0)到l的距離的最大值,反思?xì)w納,2)解決與點(diǎn)到直線的距離有關(guān)的問題,應(yīng)熟記點(diǎn)到直線的距離公式,若已知點(diǎn)到直線的距離求直線方程,一般考慮待定斜率法,此時(shí)必須討論斜率是否存在,反思?xì)w納,兩平行直線間的距離求法 (1)利用“化歸”法將兩條平行線間的距離轉(zhuǎn)化為一條直線上任意一點(diǎn)到另一條直線的距離; (2)利用兩平行線間的距離公式. 提醒:在應(yīng)用兩條平行線間的距離公式時(shí),應(yīng)把直線方程化為一般形式,且使x,y的系數(shù)分別相等,備選例題,例1】 (2015金華模擬)經(jīng)過兩條直線l1:x-2y+4=0和l2:x+y-2=0的交點(diǎn)且與直線l3:3x-4y+5=0垂直的直線l的方程為,答案:4x+3y-6=0,例3】 光線沿直線l1:x-2y+5=0射入,遇直線l:3x-2y+7=0后反射,求反射光線所在的直線方程,例4】已知直線l過點(diǎn)P(3,2),且與x軸、y軸的正半軸分別交于A、B兩點(diǎn),如圖所示,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 道路養(yǎng)護(hù)工程承包合同三篇
- 智能家居工程師的設(shè)計(jì)理念與技術(shù)要求
- 初三班主任期中工作總結(jié)耐心教導(dǎo)成功引領(lǐng)
- 垃圾處理站保安工作總結(jié)
- 汽車行業(yè)的美工工作總結(jié)
- 《汽車及配件營(yíng)銷》課件
- 《美容新術(shù)課件》課件
- 2023年四川省阿壩自治州公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2023年廣東省湛江市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2021年貴州省黔東南自治州公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024-2025學(xué)年廣東省第一次普通高中學(xué)業(yè)水平合格性考試物理仿真模擬卷三及答案
- 護(hù)理安全小組工作計(jì)劃
- 2025辦公室無償租賃合同范本
- 2024年12月八省八校T8聯(lián)考高三高考物理試卷試題(含答案)
- 遼寧省撫順市撫順縣2023-2024學(xué)年八年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(含解析)
- 《中國(guó)武術(shù)的起源》課件
- 期末測(cè)試卷(試題)(含答案)2024-2025學(xué)年北師大版數(shù)學(xué)五年級(jí)上冊(cè)
- 2024年道路運(yùn)輸安全生產(chǎn)管理制度樣本(5篇)
- 2024年度股權(quán)轉(zhuǎn)讓合同標(biāo)的及受讓方條件
- 起重機(jī)司機(jī)-特種設(shè)備操作Q2證考試練習(xí)題(含答案)
- 2024年《瘧疾防治知識(shí)》課件
評(píng)論
0/150
提交評(píng)論