初中數(shù)學(xué)競(jìng)賽專題培訓(xùn)(3):實(shí)數(shù)的若干性質(zhì)和應(yīng)用_第1頁(yè)
初中數(shù)學(xué)競(jìng)賽專題培訓(xùn)(3):實(shí)數(shù)的若干性質(zhì)和應(yīng)用_第2頁(yè)
初中數(shù)學(xué)競(jìng)賽專題培訓(xùn)(3):實(shí)數(shù)的若干性質(zhì)和應(yīng)用_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、 鼎吉教育(Dinj Education)中小學(xué)生課外個(gè)性化輔導(dǎo)中心資料 初中數(shù)學(xué)競(jìng)賽專題培訓(xùn)講練初中數(shù)學(xué)競(jìng)賽專題培訓(xùn)第三講 實(shí)數(shù)的若干性質(zhì)和應(yīng)用學(xué)習(xí)地址:佛山市南海區(qū)南海大道麗雅苑中區(qū)雅廣居2 D 第3頁(yè) 咨詢熱線13760993549(吉老師)實(shí)數(shù)是高等數(shù)學(xué)特別是微積分的重要基礎(chǔ)在初中代數(shù)中沒(méi)有系統(tǒng)地介紹實(shí)數(shù)理論,是因?yàn)樗婕暗綐O限的概念這一概念對(duì)中學(xué)生而言,有一定難度但是,如果中學(xué)數(shù)學(xué)里沒(méi)有實(shí)數(shù)的概念及其簡(jiǎn)單的運(yùn)算知識(shí),中學(xué)數(shù)學(xué)也將無(wú)法繼續(xù)學(xué)習(xí)下去了例如,即使是一元二次方程,只有有理數(shù)的知識(shí)也是遠(yuǎn)遠(yuǎn)不夠用的因此,適當(dāng)學(xué)習(xí)一些有關(guān)實(shí)數(shù)的基礎(chǔ)知識(shí),以及運(yùn)用這些知

2、識(shí)解決有關(guān)問(wèn)題的基本方法,不僅是為高等數(shù)學(xué)的學(xué)習(xí)打基礎(chǔ),而且也是初等數(shù)學(xué)學(xué)習(xí)所不可缺少的本講主要介紹實(shí)數(shù)的一些基本知識(shí)及其應(yīng)用用于解決許多問(wèn)題,例如,不難證明:任何兩個(gè)有理數(shù)的和、差、積、商還是有理數(shù),或者說(shuō),有理數(shù)對(duì)加、減、乘、除(零不能做除數(shù))是封閉的性質(zhì)1 任何一個(gè)有理數(shù)都能寫(xiě)成有限小數(shù)(整數(shù)可以看作小數(shù)點(diǎn)后面為零的小數(shù))或循環(huán)小數(shù)的形式,反之亦然例1分析 要說(shuō)明一個(gè)數(shù)是有理數(shù),其關(guān)鍵要看它能否寫(xiě)成兩個(gè)整數(shù)比的形式證 設(shè)兩邊同乘以100得-得99x=261.54-2.61=258.93,無(wú)限不循環(huán)小數(shù)稱為無(wú)理數(shù)有理數(shù)對(duì)四則運(yùn)算是封閉的,而無(wú)理是說(shuō),無(wú)理數(shù)對(duì)四則運(yùn)算是不封閉的,但它有如下性

3、質(zhì) 性質(zhì)2 設(shè)a為有理數(shù),b為無(wú)理數(shù),則(1)a+b,a-b是無(wú)理數(shù);有理數(shù)和無(wú)理數(shù)統(tǒng)稱為實(shí)數(shù),即在實(shí)數(shù)集內(nèi),沒(méi)有最小的實(shí)數(shù),也沒(méi)有最大的實(shí)數(shù)任意兩個(gè)實(shí)數(shù),可以比較大小全體實(shí)數(shù)和數(shù)軸上的所有點(diǎn)是一一對(duì)應(yīng)的在實(shí)數(shù)集內(nèi)進(jìn)行加、減、乘、除(除數(shù)不為零)運(yùn)算,其結(jié)果仍是實(shí)數(shù)(即實(shí)數(shù)對(duì)四則運(yùn)算的封閉性)任一實(shí)數(shù)都可以開(kāi)奇次方,其結(jié)果仍是實(shí)數(shù);只有當(dāng)被開(kāi)方數(shù)為非負(fù)數(shù)時(shí),才能開(kāi)偶次方,其結(jié)果仍是實(shí)數(shù)例2分析證所以分析 要證明一個(gè)實(shí)數(shù)為無(wú)限不循環(huán)小數(shù)是一件極難辦到的事由于有理數(shù)與無(wú)理數(shù)共同組成了實(shí)數(shù)集,且二者是矛盾的兩個(gè)對(duì)立面,所以,判定一個(gè)實(shí)數(shù)是無(wú)理數(shù)時(shí),常常采用反證法證 用反證法所以p一定是偶數(shù)設(shè)p=2m

4、(m是自然數(shù)),代入得4m22q2,q22m2,例4 若a1+b1a=a2+b2a(其中a1,a2,b1,b2為有理數(shù),a為無(wú)理數(shù)),則a1=a2,b1=b2,反之,亦成立分析 設(shè)法將等式變形,利用有理數(shù)不能等于無(wú)理數(shù)來(lái)證明證 將原式變形為(b1-b2)a=a2-a1若b1b2,則反之,顯然成立說(shuō)明 本例的結(jié)論是一個(gè)常用的重要運(yùn)算性質(zhì)是無(wú)理數(shù),并說(shuō)明理由整理得:由例4知aAb,1=A,說(shuō)明 本例并未給出確定結(jié)論,需要解題者自己發(fā)現(xiàn)正確的結(jié)有理數(shù)作為立足點(diǎn),以其作為推理的基礎(chǔ)例6 已知a,b是兩個(gè)任意有理數(shù),且ab,求證:a與b之間存在著無(wú)窮多個(gè)有理數(shù)(即有理數(shù)集具有稠密性)分析 只要構(gòu)造出符合

5、條件的有理數(shù),題目即可被證明證 因?yàn)閍b,所以2aa+b2b,所以說(shuō)明 構(gòu)造具有某種性質(zhì)的一個(gè)數(shù),或一個(gè)式子,以達(dá)到解題和證明的目的,是經(jīng)常運(yùn)用的一種數(shù)學(xué)建模的思想方法例7 已知a,b是兩個(gè)任意有理數(shù),且ab,問(wèn)是否存在無(wú)理數(shù),使得ab成立?即 由,有存在無(wú)理數(shù),使得ab成立b4+12b3+37b2+6b-20的值分析 因?yàn)闊o(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),所以不可能把一個(gè)無(wú)理數(shù)的小數(shù)部分一位一位確定下來(lái),這樣涉及無(wú)理數(shù)小數(shù)部分的計(jì)算題,往往是先估計(jì)它的整數(shù)部分(這是容易確定的),然后再尋求其小數(shù)部分的表示方法14=9+6b+b2,所以b2+6b=5b4+12b3+37b2+6b-20=(b4+26b3

6、+36b2)+(b2+6b)-20=(b2+6b)2+(b2+6b)-20=52+5-20=10例9 求滿足條件的自然數(shù)a,x,y解 將原式兩邊平方得由式變形為兩邊平方得例10 設(shè)an是12+22+32+n2的個(gè)位數(shù)字,n=1,2,3,求證:0.a1a2a3an是有理數(shù)分析 有理數(shù)的另一個(gè)定義是循環(huán)小數(shù),即凡有理數(shù)都是循環(huán)小數(shù),反之循環(huán)小數(shù)必為有理數(shù)所以,要證0.a1a2a3an是有理數(shù),只要證它為循環(huán)小數(shù)因此本題我們從尋找它的循環(huán)節(jié)入手證 計(jì)算an的前若干個(gè)值,尋找規(guī)律:1,5,4,0,5,1,0,4,5,5,6,0,9,5,0,6,5,9,0,0,1,5,4,0,5,1,0,4,發(fā)現(xiàn):a20=0,a21=a1,a22=a2,a23=a3,于是猜想:ak+20=ak,若此式成立,說(shuō)明0.a1a2an是由20個(gè)數(shù)字組成循環(huán)節(jié)的循環(huán)小數(shù),即下面證明ak+20=ak令f(n)=12+22+n2,當(dāng)f(n+20)-f(n)是10的倍數(shù)時(shí),表明f(n+20)與f(n)有相同的個(gè)位數(shù),而f(n+20)-f(n)=(n+1)2+(n+2)2+(n+20)2=10(2n2+42n)+(12+22+202)由

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論