




已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
ORIGINALARTICLEPseudo-constructaltheoryforshapeoptimizationofmechanicalstructuresJeanLucMarcelinReceived:10January2007/Accepted:1May2007/Publishedonline:25May2007#Springer-VerlagLondonLimited2007AbstractThisworkgivessomeapplicationsofapseudo-constructaltechniqueforshapeoptimizationofmechanicalstructures.Inthepseudo-constructaltheorydevelopedinthispaper,themainobjectiveofoptimizationisonlytheminimizationoftotalpotentialenergy.Theotherobjectivesusuallyusedinmechanicalstructuresoptimizationaretreatedlikelimitationsoroptimizationconstraints.Twoapplicationsarepresented;thefirstonedealswiththeoptimizationoftheshapeofadropofwaterbyusingageneticalgorithmwiththepseudo-constructaltechnique,andthesecondonedealswiththeoptimizationoftheshapeofahydraulichammersrearbearing.KeywordsShapeoptimization.Constructal.Geneticalgorithms1IntroductionThispaperintroducesapseudo-constructalapproachtoshapeoptimizationbasedontheminimizationofthetotalpotentialenergy.Wearegoingtoshowthatminimizingthetotalpotentialenergyofastructuretofindtheoptimalshapemightbeagoodideainsomecases.Thereferencetotheconstructaltheorycanbejustifiedinsomewayforthefollowingreasons.AccordingtoBejan1,shapeandstructurespringfromthestruggleforbetterperformanceinbothengineeringandnature;theobjectiveandconstraintsprincipleusedinengineeringisthesamemechanismfromwhichthegeometryinnaturalflowsystemsemerges.Bejan1startswiththedesignandoptimizationofengineeringsystemsanddiscoversadeterministicprincipleforthegenerationofgeometricforminnaturalsystems.Thisobservationisthebasisofthenewconstructaltheory.Optimaldistributionofimperfectionisdestinedtoremainimperfect.Thesystemworksbestwhenitsimperfectionsarespreadaroundsothatmoreandmoreinternalpointsarestressedasmuchasthehardestworkingparts.Seeminglyuniversalgeometricformsunitetheflowsystemsofengineeringandnature.Bejan1advancesanewtheoryinwhichheunabashedlyhintsthathislawisinthesameleagueasthesecondlawofthermodynamics,becauseasimplelawispurportedtopredictthegeometricformofanythingaliveonearth.Manyapplicationsoftheconstructaltheoryweredevelopedinfluidsmechanics,inparticularfortheoptimizationofflows210.Ontheotherhand,thereexists,toourknowledge,littleexamplesofapplicationsinsolidsorstructuresmechanics.Sowehaveatleasthalfofthereferencestopapersinfluiddynamics(mostofthesameauthor),becausetheconstructalmethodwasdevelopedfirstbythesameauthor,AdrianBejan,withonlyreferencestopapersinfluiddynamics.Theconstructaltheoryrestsontheassumptionthatallcreationsofnatureareoveralloptimalcomparedtothelawswhichcontroltheevolutionandtheadaptationofthenaturalsystems.Theconstructalprincipleconsistsofdistributingtheimperfectionsaswellaspossible,startingfromthesmallestscalestothelargest.Theconstructaltheoryworkswiththetotalmacroscopicstructurestartingfromtheassemblyofelementarystruc-tures,bycomplyingwiththenaturalrulesofoptimaldistributionoftheimperfections.Theobjectiveistheresearchoflowercost.IntJAdvManufTechnol(2008)38:16DOI10.1007/s00170-007-1080-2J.L.Marcelin(*)LaboratorieSolsSolidesStructures3S,UMRCNRSC5521,DomaineUniversitaire,BPn53,38041GrenobleCedex9,Francee-mail:Jean-Luc.Marcelinujf-grenoble.frHowever,aglobalandmacroscopicsolutionfortheoptimizationofmechanicalstructureshavingleastcostastheobjectivecanbeveryclosetotheconstructaltheory,fromwherethetermpseudo-constructalcomes.Theconstructaltheoryisapredictivetheory,withonlyonesingleprincipleofoptimizationfromwhichallrises.Thesameappliestothepseudo-constructalstepwhichisthesubjectofthisarticle.Thesingleprincipleofoptimiza-tionofthepseudo-constructaltheoryistheminimizationoftotalpotentialenergy.Moreover,inourexamplespresentedhereafter,thepseudo-constructalprinciplewillbeassociatedwithageneticalgorithm,withtheresultthatouroptimizationwillbeveryclosetothenaturallaws.Theobjectiveofthispaperisthustoshowhowthepseudo-constructalstepcanapplytothemechanicsofthestructures,andinparticulartotheshapeoptimizationofmechanicalstructures.Thebasicideaisverysimple:amechanicalstructureinabalancedstatecorrespondstoaminimaltotalpotentialenergy.Inthesameway,anoptimalmechanicalstructuremustalsocorrespondtoaminimaltotalpotentialenergy,anditisthisobjectivewhichmustintervenefirstoveralltheothers.Itisthisideawhichwillbedevelopedinthisarticle.Twoexampleswillbepresentedthereafter.Theideatominimizetotalpotentialenergyinordertooptimizeamechanicalstructureisnotbrandnew.Manypapersalreadydealwiththisproblem.Whatisnew,istomakethisapproachsystematic.Theonlyobjectiveofoptimizationbecomestheminimizationofenergy.InGosling11,asimplemethodisproposedforthedifficultcaseofform-findingofcablenetandmembranestructures.Thismethodisbaseduponbasicenergyconcepts.Atruncatedstrainexpressionisusedtodefinethetotalpotentialenergy.ThefinalenergyformisminimizedusingthePowellalgorithm.InKannoandOhsaki12,theminimumprincipleofcomplementaryenergyisestablishedforcablenetworksinvolvingonlystresscomponentsasvariablesingeometricallynonlinearelasticity.Inordertoshowthestrongdualitybetweentheminimizationproblemsoftotalpotentialenergyandcomplementaryenergy,theconvexformulationsoftheseproblemsareinvestigated,whichcanbeembeddedintoaprimal-dualpairofsecond-orderprogrammingproblems.InTaroco13,shapesensitivityanalysisofanelasticsolidinequilibriumispresented.Thedomainandboundaryintegralexpressionsofthefirstandsecond-ordershapederivativesofthetotalpotentialenergyareestablished.InWarner14,anoptimaldesignproblemissolvedforanelasticrodhangingunderitsownweight.Thedistributionofthecross-sectionalareathatminimizesthetotalpotentialenergystoredinanequilibriumstateisfound.Thecompanionproblemofthedesignthatstoresthemaximumpotentialenergyunderthesameconstraintconditionsisalsosolved.InVentura15,theproblemofboundaryconditionsenforcementinmeshlessmethodsissolved.InVentura15,themovingleast-squaresapproximationisintroducedinthetotalpotentialenergyfunctionalfortheelasticsolidproblemandanaugmentedLagrangiantermisaddedtosatisfyessentialboundaryconditions.Theprincipleofminimizationoftotalpotentialenergyisinadditionatthebaseofthegeneralfiniteelementsformulation,withanaimoffindingtheunknownoptimalnodalfactors16.2ThemethodsusedInthepseudo-constructaltheorydevelopedinthispaper,themainobjectiveofoptimizationisonlytheminimizationoftotalpotentialenergy.Theotherobjectivesusuallyusedinmechanicalstructuresoptimizationaretreatedherelikelimitationsoroptimizationconstraints.Forexample,onemayhavelimitationsontheweight,ortonotexceedthevalueofastress.Theideawhichwillbedevelopedinthispaperisthusverysimple.Amechanicalstructureisdescribedbytwotypesofparameters:variablesknownasdiscretizationvariables(forexample,degreesoffreedomindisplacementforfiniteelementsmethod),andgeometricalvariablesofdesign(forexampleparameterswhichmakeitpossibletodescribethemechanicalstructureshape).Totalpotentialenergydependsonanimplicitorexplicitwayofdetermin-ingdiscretizationanddesignvariablesatthesametime.Onethuswillcarryoutadoubleoptimizationofthemechanicalstructure,comparedtothediscretizationanddesignvariables;theobjectivebeingtominimizetotalpotentialenergyoverall.Clearly,theproblemofoptimiza-tionofamechanicalstructurewillbeaddressedbythefollowingapproach:Objective:tominimizetotalpotentialenergyVariablesofoptimization:concurrentlydeterminingdiscretizationvariables(inthecaseofatraditionaluseofthefiniteelementmethodinmechanicsofstruc-tures),anddesignvariablesdescribingtheshapeofthestructureOptimizationlimitations:WeightorvolumeDisplacementsorstrainsStressesFrequenciesTheproblemofoptimizationofamechanicalstructurewillbesolvedinthefollowingway,whilereiteratingon2IntJAdvManufTechnol(2008)38:16thesestages,ifneeded(accordingtothenatureoftheproblem):Stage1Minimizationofthetotalpotentialenergyofthemechanicalstructurecomparedtotheonlydis-cretizationvariablesofthestructure(degreesoffreedominfiniteelements).Itactshereasanoptimizationwithoutoptimizationlimitations.Theonlylimitationsatthisstageareofpurelymechanicalorigin,andrelatetotheboundaryconditionsandtotheexternaleffortsappliedtothestructure.Inthisstage1,thedesignvariablesremainfixed,andoneobtainstheimplicitorexplicitexpressionsofthedegreesoffreedomaccordingtothedesignvariables(whichcanbethevariableswhichmakeitpossibletodescribetheshape,inthecaseofashapeoptimization,forexample).Onewillseeintheexamplesofthefollowingpartthattheseexpressionscanbeexplicitorimplicitandwhichisthesuitabletreatmentfollowingthecases.Inthecaseofafiniteelementsmethodofcalculation,thisstage1isthebasisoffiniteelementscalculationtoobtainthedegreesoffreedomofthemechanicalstructure.Indeed,infiniteelements,displacementswiththenodesofthemechanicalstructuremeshareobtainedbyminimizationoftotalpotentialenergy16.Stage2Theexpressionsofthedegreesoffreedomofthemechanicalstructureaccordingtothedesignvariablesobtainedpreviouslyaretheninjectedintothetotalpotentialenergyofthemechanicalstructure(onewillseeinthesecondexampleofthefollowingparthowonetreatsthecasewherethedegreesoffreedomareimplicitfunctionsofthedesignvariables).Onethenobtainsanexpressionofthetotalpotentialenergywhichdependsonlyonthedesignvariables(inexplicitorimplicitform).Stage3Onethencarriesoutasecondandnewminimi-zationofthetotalpotentialenergyobtainedintheprecedingform,butthistimecomparedtothedesignvariableswhilerespectingthetechnolog-icallimitationsortheoptimizationconstraintsoftheproblem.Thismethodcanbeappliedwithmoreorlessfacilityaccordingtothenatureoftheproblem.Itisclear,forexample,thatifthediscretizationvariablescanbeexpressedinanexplicitwayaccordingtothedesignvariables,thesettinginofstages2to3isimmediate,andwithoutiterations.Ifthediscretizationvariablescannotbeexpressedinanexplicitwayaccordingtothedesignvariables,orifthetopologyofthestructureisnotfixed,orifthebehaviorisnotlinear,itwillbenecessarytoproceedbysuccessiveiterationsonstages1to3.Itisthecaseoftheexamplespresentedinthefollowingpart,andonewillseeonthisoccasionwhichtypeofstrategyonecanadoptfortheseiterations.Tosummarize,inthepseudo-constructalstep,themainobjectiveisonlytheminimizationoftotalpotentialenergy,theotherpossibleobjectivesaretreatedlikelimitationsoroptimizationconstraints.TheoptimizationmethodusedforourexamplesisGA(geneticalgorithm),asdescribedin17.Exampleswithsimilarinstructionalvaluecanalsobefoundinmanybooks,e.g.in18.Thisevolutionarymethodisveryconvenientforourpseudo-constructalmethod.TheauthorhasworkedextensivelyinGAsandpublishedinsomereputedjournalsonthistopic1931.AsthetopicofGAsisstillrelativelynewinthestructuralmechanicscommu-nity,weprovideheresomedetailsofexactlywhatisusedinthisGA.Amultiplepointcrossoverisusedratherthanasinglepointcrossover.Theselectionschemeusedateachgenerationisentirelystochastic.Forourexamples,thenumberofgenerationsisequaltothatusedforconver-gence.TheresultsprovidedforourexampleswereconsistentlyreproducedbyusingdifferentseedsintheGA.Ithasbeenprovedthataratherstandardgeneticalgorithmissufficientforourexamples.3ExamplesEventhoughpotentialenergymaybeagoodmeasureforsomeoptimizations,potentialenergyisnotwhatgivestheshapetoawaterdroplet,nordefinestheoptimalshapeforahammer,whichiswhypotentialenergyisnottheonlyobjective;buttheoptimizationproblemisamultiobjectiveoneandtheobjectivefunctionsforthetwoexamplesarethenclearlyformulated.3.1Example1:optimizationoftheshapeofadropofwaterThefirsttestexampleistheoptimizationoftheshapeofadropofwater(Fig.1).Thisproblemisequivalenttoanequalresistancetankcalculatedbythemembranetheory.Theobjectiveistoseeifthepseudo-constructaltheorygivesthenaturesoptimumdesign.3.1.1ThemethodsusedThegeometryofthedropofwaterisdefinedbythegeneratinglineofathinaxisymmetricshell.Thislineisdescribedbysuccessivestraightorcircularsegmentsdescribedinagivensenseanddefinedbyinputdataofmasterpointcoordinatesandradiusvalues.Theinitialdataareasetofnodalpointsconnectedbystraightsegments.EachnodalpointisidentifiedbyitstwocylindricalIntJAdvManufTechnol(2008)38:163coordinates(r,z),andarealRwhichrepresentstheradiusofthecircletangenttothetwostraightsegmentsintersect-ingatthepoint.Theothercomputercalculationsgivethecoordinatesofanyboundarypointandespeciallythetangentpointsnecessarytodefinethecirculararclengths.ThedesignofthedropofwaterisdescribedbythreearcsofcirclesasindicatedinFig.1.Analysisisperformedbythefiniteelementmethodwiththree-nodeparabolicelementsusingtheclassicalLove-Kirchoffshelltheory.Anautomaticmeshgeneratorcreatesthefiniteelementmeshofeachstraightorcircularsegmentconsideredasamacrofiniteelement.Theobjectiveistoobtainashapeforthedropofwatergivingrisetoaminimumtotalpotentialenergy(whichisthemainobjective)andanequalresistancetank(whichistheonlyconstraintorlimitationoftheproblem).Infact,forthedropofwaterproblem,thegoalisamulti-objectiveone,thetwoobjectives(f1=minimumtotalpotentialenergyandf2=equalresistance)arecombinedinamulti-objective:f=f1+f2.TheconstraintorlimitationoftheproblemistakenintoaccountbyapenalizationofthetotalpotentialenergyasindicatedinMarcelinetal.TheresultsThedesignofthedropofwaterisdescribedbythreearcsofacircle(Fig.1).Th
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年內(nèi)蒙古貨車從業(yè)資格證考試試題
- 2025-2030國內(nèi)健康食品行業(yè)市場發(fā)展分析及發(fā)展前景與投資機(jī)會研究報告
- 2025-2030中國鮮橙汁行業(yè)市場深度調(diào)研及發(fā)展策略與風(fēng)險研究報告
- 《城市軌道交通票務(wù)工作》課件-項目一 認(rèn)知票務(wù)管理體系 售票員結(jié)算作業(yè)
- 2025至2031年中國消渴降糖膠囊行業(yè)投資前景及策略咨詢研究報告
- 2025-2030中國高鈣奶行業(yè)發(fā)展分析及發(fā)展趨勢預(yù)測與投資風(fēng)險研究報告
- 2025年國企管理人員能力測評試卷及答案
- 2025-2030健康行業(yè)發(fā)展分析及投資戰(zhàn)略研究報告
- 2025-2030味精行業(yè)風(fēng)險投資態(tài)勢及投融資策略指引報告
- 2025-2030加油站建設(shè)行業(yè)市場深度分析及供需形勢與投資價值研究報告
- GB/T 6433-2025飼料中粗脂肪的測定
- 服務(wù)消費券發(fā)放的精細(xì)化實施方案
- 2019版 浙科版 高中生物學(xué) 必修2 遺傳與進(jìn)化《第二章 染色體與遺傳》大單元整體教學(xué)設(shè)計2020課標(biāo)
- 【MOOC期末】《介入放射學(xué)》(東南大學(xué))中國大學(xué)慕課答案
- DB50T 771-2017 地下管線探測技術(shù)規(guī)范
- 防災(zāi)減災(zāi)培訓(xùn)(安全行業(yè)講座培訓(xùn)課件)
- 2024年《BIM技術(shù)介紹》課件
- 情景教學(xué)法在小學(xué)英語課堂中的有效運(yùn)用研究(開題報告)
- 花鍵計算公式DIN5480
- 《荷塘月色》課件+2024-2025學(xué)年統(tǒng)編版高中語文必修上冊
- 軟著著作權(quán)單位與個人合作開發(fā)協(xié)議書(2篇)
評論
0/150
提交評論