外文翻譯--平面波.doc_第1頁(yè)
外文翻譯--平面波.doc_第2頁(yè)
外文翻譯--平面波.doc_第3頁(yè)
外文翻譯--平面波.doc_第4頁(yè)
外文翻譯--平面波.doc_第5頁(yè)
已閱讀5頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

外文部分Chapter2Planewaves2.1IntroductionInthischapterwepresentthefoundationsofFourieracoustics-planewaveexpansions.Thismaterialispresentedindepthtoprovideafirmfoundationfortherestofthebook,introducingconceptslikewavenumberspaceandtheextrapolationofwavefieldsfromonesurfacetoanother.Fouriesacousticsisusedtoderivesomefamoustoolsfortheradiationfromplanarsources;theRayleighintegrals,theEwaldsphereconstructionoffarfieldradiation,thefirstproducttheoremforarrays,vibratingplateradiation,andradiationclassificationtheory.Finally,anewtoolcalledsupersonicintensityisintroducedwhichisusefulinlocatingacousticsourcesonvibratingstructures.Webeginthechapterwithareviewofsomefundamentals;thewaveequation,Eulersequation,andtheconceptofacousticintensity.2.2TheWaveEquationandEulersEquationLetp(x,y,z,t)beaninfinitesimalvariationofacousticpressurefromitsequilibriumvaluewhichsatisfiestheacousticwaveequation222210ppct(2.1)forahomogeneousfluidwithnoviscosity.cisaconstantandreferstothespeedofsoundinthemedium.At020Cc=343m/sinairandc=1481m/sinwater.TherighthandsideofEq.(2.1)indicatesthattherearenosourcesinthevolumeinwhichtheequationisvalid.InCartesiancoordinates2222222xyzAsecondequationwhichwillbeusedthroughoutthisbookiscalledEulersequation,0vpt(2.2)Wherev(Greekletterupsilon)representsthevelocityvectorwithcomponentsu,v,w;vuivjwk(2.3)whereijandkaretheunitvectorsinthethex,y,andzdirections,respectively,andthegradientintermsoftheunitvectorsasijkxyz(2.4)WeusetheconventionofadotoveradisplacementsquantitytoindicatevelocityasisdoneinJungerandFeit.Thedisplacementsinthethreecoordinatedirectionsaregivenbyu,v,andw.ThederivationofEq.(2.2)isusefulindevelopingsomeunderstandingofthephysicalmeaningofpandv.Letusproceedinthisdirection.Figure2.1:InfinitesimalvolumeelementtoillustrateEulersequationFigure2.1showsaninfinitesimalvolumeelementoffluidxyz,withthexaxisasshown.Allsixfacesexperienceforcesduetothepressurepinthefluid.Itisimportanttorealizethatpressureisascalarquantity.Thereisnodirectionassociatedwithit.Ithasunitsofforceperunitarea,2/NmorPascals.Thefollowingistheconventionforpressure,P0CompressionP0RarefactionAtaspecificpointinafluid.apositivepressureindicatesthataninfinitesimalvolumesurroundingthepointisundercompression,andforcesareexertedoutwardfromthisvolume.ItfollowsthatifthepressureattheleftfaceofthecubeinFig.2.1ispositive,thenaforcewillbeexertedinthepositivexdirectionofmagnitudep(x,y,z)yz.Thepressureattheoppositefacep(x+x,y,z)isexertedinthenegativexdirection.Weexpandp(x+x,y,z)inaTaylorseriestofirstorder,asshowninthefigure.Notethattheforcearrowsindicatethedirectionofforceforpositivepressure.Giventhedirectionsofforceshown,thetotalforceexertedonthevolumeinthexdirectionis(,)(,)ppxyzpxxyzyzxyzxNowweinvokeNewtonsequation,f=ma=mut,wherefistheforce,0mxyzand0isthefluiddensity,yielding0uptxCarryingoutthesameanalysisintheyandzdirectionsyieldsthefollowingtwoequations:0uptyand0uptzWecombinetheabovethreeequationsintooneusingvectorsyieldingEq(2.2)above,EulersEquation.2.3InstantaneousAcousticIntensityItiscriticalinthestudyofacousticstounderstandcertainenergyrelationships.Mostimportantistheacousticintensityvector.Inthetimedomainitiscalledtheinstantaneousacousticandisdefinedas()()()Itptvt,(2.5)withunitsofenergyperunittime(power)perunitarea,measuredas(joules/s)/2morwatts/2m.Theacousticintensityisrelatedtotheenergydensityethroughitsdivergence,eIt,(2.6)wherethedivergenceisyxzIIIIxyz(2.7)Theenergydensityisgivenby2211022|()|()evtpt(2.8)whereisthefluidcompressibility,201c(2.9)Equation(2.6)expressesthefactthatanincreaseintheenergydensityatsomepointinthefluidisindicatedbyanegativedivergenceoftheacousticintensityvector;theintensityvectorsarepointingintotheregionofincreaseinenergydensity.Figure2.2shouldmakethisclear.IfwereversethearrowsinFig.2.2,apositivedivergenceresultsandtheenergydensityatthecentermustdecrease,thatis,et0.Thiscaserepresentsanapparentsourceofenergyatthecenter.Figure2.2:Illustrationofnegativedivergenceofacousticintensity.Theregionatthecenterhasanincreasingenergydensitywithtime,thatis,anapparentsinkofenergy.2.4SteadyStateToconsiderphenomenainthefrequencydomain,weobtainthesteadythesteadystatesolutionthroughtransforms()1()2iwtptpwedw(2.10)leadingtothesteadystatesolution()()iwtpwptedt(2.11)Equation(2.10)canbedifferentiatedwithrespecttotimetoyieldtheimportantrelationship()1()2iw

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論