數(shù)學(xué)北師大版八年級下冊提公因式法.docx_第1頁
數(shù)學(xué)北師大版八年級下冊提公因式法.docx_第2頁
數(shù)學(xué)北師大版八年級下冊提公因式法.docx_第3頁
數(shù)學(xué)北師大版八年級下冊提公因式法.docx_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

4.2.1 提公因式法(一)教學(xué)目標(biāo)(一)教學(xué)知識點(diǎn)讓學(xué)生了解多項(xiàng)式公因式的意義,初步會(huì)用提公因式法分解因式.(二)能力訓(xùn)練要求通過找公因式,培養(yǎng)學(xué)生的觀察能力.(三)情感與價(jià)值觀要求在用提公因式法分解因式時(shí),先讓學(xué)生自己找公因式,然后大家討論結(jié)果的正確性,讓學(xué)生養(yǎng)成獨(dú)立思考的習(xí)慣,同時(shí)培養(yǎng)學(xué)生的合作交流意識,還能使學(xué)生初步感到因式分解在簡化計(jì)算中將會(huì)起到很大的作用.教學(xué)重點(diǎn)能觀察出多項(xiàng)式的公因式,并根據(jù)分配律把公因式提出來.教學(xué)難點(diǎn)讓學(xué)生識別多項(xiàng)式的公因式.教學(xué)方法獨(dú)立思考合作交流法.教學(xué)過程.創(chuàng)設(shè)問題情境,引入新課投影片(4.2.1 A)一塊場地由三個(gè)矩形組成,這些矩形的長分別為,寬都是,求這塊場地的面積.解法一:S= + + =+=2解法二:S= + + = ( +)=4=2師從上面的解答過程看,解法一是按運(yùn)算順序:先算乘,再算和進(jìn)行的,解法二是先逆用分配律算和,再計(jì)算一次乘,由此可知解法二要簡單一些.這個(gè)事實(shí)說明,有時(shí)我們需要將多項(xiàng)式化為積的形式,而提取公因式就是化積的一種方法.新課講解1.公因式與提公因式法分解因式的概念.師若將剛才的問題一般化,即三個(gè)矩形的長分別為a、b、c,寬都是m,則這塊場地的面積為ma+mb+mc,或m(a+b+c),可以用等號來連接.ma+mb+mc=m(a+b+c)從上面的等式中,大家注意觀察等式左邊的每一項(xiàng)有什么特點(diǎn)?各項(xiàng)之間有什么聯(lián)系?等式右邊的項(xiàng)有什么特點(diǎn)?生等式左邊的每一項(xiàng)都含有因式m,等式右邊是m與多項(xiàng)式(a+b+c)的乘積,從左邊到右邊是分解因式.師由于m是左邊多項(xiàng)式ma+mb+mc的各項(xiàng)ma、mb、mc的一個(gè)公共因式,因此m叫做這個(gè)多項(xiàng)式的各項(xiàng)的公因式.由上式可知,把多項(xiàng)式ma+mb+mc寫成m與(a+b+c)的乘積的形式,相當(dāng)于把公因式m從各項(xiàng)中提出來,作為多項(xiàng)式ma+mb+mc的一個(gè)因式,把m從多項(xiàng)式ma+mb+mc各項(xiàng)中提出后形成的多項(xiàng)式(a+b+c),作為多項(xiàng)式ma+mb+mc的另一個(gè)因式,這種分解因式的方法叫做提公因式法.2.例題講解例1將下列各式分解因式:(1)3x+6;(2)7x221x;(3)8a3b212ab3c+abc(4)24x312x2+28x.分析:首先要找出各項(xiàng)的公因式,然后再提取出來.師請大家互相交流.生解:(1)3x+6=3x+32=3(x+2);(2)7x221x=7xx7x3=7x(x3);(3)8a3b212ab3c+abc=8a2bab12b2cab+abc=ab(8a2b12b2c+c)(4)24x312x2+28x=4x(6x2+3x7)3.議一議師通過剛才的練習(xí),下面大家互相交流,總結(jié)出找公因式的一般步驟.生首先找各項(xiàng)系數(shù)的最大公約數(shù),如8和12的最大公約數(shù)是4.其次找各項(xiàng)中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指數(shù)取次數(shù)最低的.4.想一想師大家總結(jié)得非常棒.從例1中能否看出提公因式法分解因式與單項(xiàng)式乘以多項(xiàng)式有什么關(guān)系?生提公因式法分解因式就是把一個(gè)多項(xiàng)式化成單項(xiàng)式與多項(xiàng)式相乘的形式.課堂練習(xí)(一)隨堂練習(xí)1.寫出下列多項(xiàng)式各項(xiàng)的公因式.(1)ma+mb (m)(2)4kx8ky (4k)(3)5y3+20y2 (5y2)(4)a2b2ab2+ab (ab)2.把下列各式分解因式(1)8x72=8(x9)(2)a2b5ab=ab(a5)(3)4m36m2=2m2(2m3)(4)a2b5ab+9b=b(a25a+9)(5)a2+abac=(a2ab+ac)=a(ab+c)(6)2x3+4x22x=(2x34x2+2x)=2x(x22x+1)(二)補(bǔ)充練習(xí)投影片(4.2.1 B)把3x26xy+x分解因式生解:3x26xy+x=x(3x6y)師大家同意他的做法嗎?生不同意.改正:3x26xy+x=x(3x6y+1)師后面的解法是正確的,出現(xiàn)錯(cuò)誤的原因是受到1作為項(xiàng)的系數(shù)通??梢允÷缘挠绊?,而在本題中是作為單獨(dú)一項(xiàng),所以不能省略,如果省略就少了一項(xiàng),當(dāng)然不正確,所以多項(xiàng)式中某一項(xiàng)作為公因式被提取后,這項(xiàng)的位置上應(yīng)是1,不能省略或漏掉.在分解因式時(shí)應(yīng)如何減少上述錯(cuò)誤呢?將x寫成x1,這樣可知提出一個(gè)因式x后,另一個(gè)因式是1.課時(shí)小結(jié)1.提公因式法分解因式的一般形式,如:ma+mb+mc=m(a+b+c).這里的字母a、b、c、m可以是一個(gè)系數(shù)不為1的、多字母的、冪指數(shù)大于1的單項(xiàng)式.2.提公因式法分解因式,關(guān)鍵在于觀察、發(fā)現(xiàn)多項(xiàng)式的公因式.3.找公因式的一般步驟(1)若各項(xiàng)系數(shù)是整系數(shù),取系數(shù)的最大公約數(shù);(2)取相同的字母,字母的指數(shù)取較低的;(3)取相同的多項(xiàng)式,多項(xiàng)式的指數(shù)取較低的.(4)所有這些因式的乘積即為公因式.4.初學(xué)提公因式法分解因式,最好先在各項(xiàng)中將公因式分解出來,如果這項(xiàng)就是公因式,也要將它寫成乘1的形式,這樣可以防范錯(cuò)誤,即漏項(xiàng)的錯(cuò)誤發(fā)生.5.公因式相差符號的,如(xy)與(yx)要先統(tǒng)一公因式,同時(shí)要防止出現(xiàn)符號問題.課后作業(yè)習(xí)題4.2 1、2小題.活動(dòng)與探究利用分解因式計(jì)算:(1)3200432003;(2)(2)101+(2)100.解:(1)3200432003=32003(31)=320032=232003(2)(2)101+(2)100=(2)100(2+1)=(2)100(1)=(2)100=2100板書設(shè)計(jì)4.2.1 提公因式法(一)一、1.公因式與提公因式法分解因式的概念2.例題講解(例1)3.議一議(找公因式的一般步驟)4.想一想二、課堂練習(xí)1.隨堂練習(xí)2.補(bǔ)充練習(xí)三、課時(shí)小結(jié)四、課后作業(yè)備課資料參考練習(xí)一、把下列各式分解因式:1.2a4b;2.ax2+ax4a;3.3ab23a2b;4.2x3+2x26x;5.7x2+7x+14;6.12a2b+24

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論