數(shù)學(xué)人教版九年級上冊21.2.3 公式法.doc_第1頁
數(shù)學(xué)人教版九年級上冊21.2.3 公式法.doc_第2頁
數(shù)學(xué)人教版九年級上冊21.2.3 公式法.doc_第3頁
數(shù)學(xué)人教版九年級上冊21.2.3 公式法.doc_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

21.2.3 公式法 教學(xué)內(nèi)容 1一元二次方程求根公式的推導(dǎo)過程; 2公式法的概念; 3利用公式法解一元二次方程 教學(xué)目標(biāo) 理解一元二次方程求根公式的推導(dǎo)過程,了解公式法的概念,會(huì)熟練應(yīng)用公式法解一元二次方程 復(fù)習(xí)具體數(shù)字的一元二次方程配方法的解題過程,引入ax2+bx+c=0(a0)的求根公式的推導(dǎo)公式,并應(yīng)用公式法解一元二次方程 重難點(diǎn)關(guān)鍵 1重點(diǎn):求根公式的推導(dǎo)和公式法的應(yīng)用 2難點(diǎn)與關(guān)鍵:一元二次方程求根公式法的推導(dǎo) 教學(xué)過程 一、復(fù)習(xí)引入 (學(xué)生活動(dòng))用配方法解下列方程 (1)6x2-7x+1=0 (2)4x2-3x=52 (老師點(diǎn)評) (1)移項(xiàng),得:6x2-7x=-1 二次項(xiàng)系數(shù)化為1,得:x2-x=- 配方,得:x2-x+()2=-+()2 (x-)2=x-= x1=+=1 x2=-+= (2)略 總結(jié)用配方法解一元二次方程的步驟(學(xué)生總結(jié),老師點(diǎn)評) (1)移項(xiàng); (2)化二次項(xiàng)系數(shù)為1; (3)方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方; (4)原方程變形為(x+m)2=n的形式; (5)如果右邊是非負(fù)數(shù),就可以直接開平方求出方程的解,如果右邊是負(fù)數(shù),則一元二次方程無解 二、探索新知 如果這個(gè)一元二次方程是一般形式ax2+bx+c=0(a0),你能否用上面配方法的步驟求出它們的兩根,請同學(xué)獨(dú)立完成下面這個(gè)問題 問題:已知ax2+bx+c=0(a0)且b2-4ac0,試推導(dǎo)它的兩個(gè)根x1=,x2= 分析:因?yàn)榍懊婢唧w數(shù)字已做得很多,我們現(xiàn)在不妨把a(bǔ)、b、c也當(dāng)成一個(gè)具體數(shù)字,根據(jù)上面的解題步驟就可以一直推下去 解:移項(xiàng),得:ax2+bx=-c 二次項(xiàng)系數(shù)化為1,得x2+x=- 配方,得:x2+x+()2=-+()2 即(x+)2= b2-4ac0且4a20 0 直接開平方,得:x+= 即x= x1=,x2= 由上可知,一元二次方程ax2+bx+c=0(a0)的根由方程的系數(shù)a、b、c而定,因此: (1)解一元二次方程時(shí),可以先將方程化為一般形式ax2+bx+c=0,當(dāng)b-4ac0時(shí),將a、b、c代入式子x=就得到方程的根 (2)這個(gè)式子叫做一元二次方程的求根公式 (3)利用求根公式解一元二次方程的方法叫公式法 (4)由求根公式可知,一元二次方程最多有兩個(gè)實(shí)數(shù)根 例1用公式法解下列方程 (1)2x2-4x-1=0 (2)5x+2=3x2 (3)(x-2)(3x-5)=0 (4)4x2-3x+1=0 分析:用公式法解一元二次方程,首先應(yīng)把它化為一般形式,然后代入公式即可 解:(1)a=2,b=-4,c=-1 b2-4ac=(-4)2-42(-1)=240 x= x1=,x2= (2)將方程化為一般形式 3x2-5x-2=0 a=3,b=-5,c=-2 b2-4ac=(-5)2-43(-2)=490 x= x1=2,x2=- (3)將方程化為一般形式 3x2-11x+9=0 a=3,b=-11,c=9 b2-4ac=(-11)2-439=130 x= x1=,x2= (3)a=4,b=-3,c=1 b2-4ac=(-3)2-441=-70 因?yàn)樵趯?shí)數(shù)范圍內(nèi),負(fù)數(shù)不能開平方,所以方程無實(shí)數(shù)根 三、鞏固練習(xí) 課后作業(yè) 四、應(yīng)用拓展 例2某數(shù)學(xué)興趣小組對關(guān)于x的方程(m+1)+(m-2)x-1=0提出了下列問題 (1)若使方程為一元二次方程,m是否存在?若存在,求出m并解此方程 (2)若使方程為一元二次方程m是否存在?若存在,請求出 你能解決這個(gè)問題嗎? 分析:能(1)要使它為一元二次方程,必須滿足m2+1=2,同時(shí)還要滿足(m+1)0 (2)要使它為一元一次方程,必須滿足:或或 解:(1)存在根據(jù)題意,得:m2+1=2 m2=1 m=1 當(dāng)m=1時(shí),m+1=1+1=20 當(dāng)m=-1時(shí),m+1=-1+1=0(不合題意,舍去) 當(dāng)m=1時(shí),方程為2x2-1-x=0 a=2,b=-1,c=-1 b2-4ac=(-1)2-42(-1)=1+8=9 x= x1=,x2=- 因此,該方程是一元二次方程時(shí),m=1,兩根x1=1,x2=- (2)存在根據(jù)題意,得:m2+1=1,m2=0,m=0 因?yàn)楫?dāng)m=0時(shí),(m+1)+(m-2)=2m-1=-10 所以m=0滿足題意 當(dāng)m2+1=0,m不存在 當(dāng)m+1=0,即m=-1時(shí),m-2=-30 所以m=-1也滿足題意 當(dāng)m=0時(shí),一元一次方程是x-2x-1=0, 解得:x=-1 當(dāng)m=-1時(shí),一元一次方程是-3x-1=0 解得x=- 因此,當(dāng)m=0或-1時(shí),該方程是一元一次方程,并且當(dāng)m=0時(shí),其根為x=-1;當(dāng)m=-1時(shí)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論