




已閱讀5頁,還剩8頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
習(xí)題精選精講圓錐曲線1.圓錐曲線的兩個定義:(1)第一定義中要重視“括號”內(nèi)的限制條件:橢圓中,與兩個定點(diǎn)F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當(dāng)常數(shù)等于時,軌跡是線段FF,當(dāng)常數(shù)小于時,無軌跡;雙曲線中,與兩定點(diǎn)F,F(xiàn)的距離的差的絕對值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對值”與|FF|不可忽視。若|FF|,則軌跡是以F,F(xiàn)為端點(diǎn)的兩條射線,若|FF|,則軌跡不存在。若去掉定義中的絕對值則軌跡僅表示雙曲線的一支。如(1)已知定點(diǎn),在滿足下列條件的平面上動點(diǎn)P的軌跡中是橢圓的是 A B C D(答:C);(2)方程表示的曲線是_(答:雙曲線的左支)(2)第二定義中要注意定點(diǎn)和定直線是相應(yīng)的焦點(diǎn)和準(zhǔn)線,且“點(diǎn)點(diǎn)距為分子、點(diǎn)線距為分母”,其商即是離心率。圓錐曲線的第二定義,給出了圓錐曲線上的點(diǎn)到焦點(diǎn)距離與此點(diǎn)到相應(yīng)準(zhǔn)線距離間的關(guān)系,要善于運(yùn)用第二定義對它們進(jìn)行相互轉(zhuǎn)化。如已知點(diǎn)及拋物線上一動點(diǎn)P(x,y),則y+|PQ|的最小值是_(答:2)2.圓錐曲線的標(biāo)準(zhǔn)方程(標(biāo)準(zhǔn)方程是指中心(頂點(diǎn))在原點(diǎn),坐標(biāo)軸為對稱軸時的標(biāo)準(zhǔn)位置的方程):(1)橢圓:焦點(diǎn)在軸上時()(參數(shù)方程,其中為參數(shù)),焦點(diǎn)在軸上時1()。方程表示橢圓的充要條件是什么?(ABC0,且A,B,C同號,AB)。如(1)已知方程表示橢圓,則的取值范圍為_(答:);(2)若,且,則的最大值是_,的最小值是_(答:)(2)雙曲線:焦點(diǎn)在軸上: =1,焦點(diǎn)在軸上:1()。方程表示雙曲線的充要條件是什么?(ABC0,且A,B異號)。如(1)雙曲線的離心率等于,且與橢圓有公共焦點(diǎn),則該雙曲線的方程_(答:);(2)設(shè)中心在坐標(biāo)原點(diǎn),焦點(diǎn)、在坐標(biāo)軸上,離心率的雙曲線C過點(diǎn),則C的方程為_(答:)(3)拋物線:開口向右時,開口向左時,開口向上時,開口向下時。3.圓錐曲線焦點(diǎn)位置的判斷(首先化成標(biāo)準(zhǔn)方程,然后再判斷):(1)橢圓:由,分母的大小決定,焦點(diǎn)在分母大的坐標(biāo)軸上。如已知方程表示焦點(diǎn)在y軸上的橢圓,則m的取值范圍是_(答:)(2)雙曲線:由,項系數(shù)的正負(fù)決定,焦點(diǎn)在系數(shù)為正的坐標(biāo)軸上;(3)拋物線:焦點(diǎn)在一次項的坐標(biāo)軸上,一次項的符號決定開口方向。特別提醒:(1)在求解橢圓、雙曲線問題時,首先要判斷焦點(diǎn)位置,焦點(diǎn)F,F(xiàn)的位置,是橢圓、雙曲線的定位條件,它決定橢圓、雙曲線標(biāo)準(zhǔn)方程的類型,而方程中的兩個參數(shù),確定橢圓、雙曲線的形狀和大小,是橢圓、雙曲線的定形條件;在求解拋物線問題時,首先要判斷開口方向;(2)在橢圓中,最大,在雙曲線中,最大,。4.圓錐曲線的幾何性質(zhì):(1)橢圓(以()為例):范圍:;焦點(diǎn):兩個焦點(diǎn);對稱性:兩條對稱軸,一個對稱中心(0,0),四個頂點(diǎn),其中長軸長為2,短軸長為2;準(zhǔn)線:兩條準(zhǔn)線; 離心率:,橢圓,越小,橢圓越圓;越大,橢圓越扁。如(1)若橢圓的離心率,則的值是_(答:3或);(2)以橢圓上一點(diǎn)和橢圓兩焦點(diǎn)為頂點(diǎn)的三角形的面積最大值為1時,則橢圓長軸的最小值為_(答:)(2)雙曲線(以()為例):范圍:或;焦點(diǎn):兩個焦點(diǎn);對稱性:兩條對稱軸,一個對稱中心(0,0),兩個頂點(diǎn),其中實(shí)軸長為2,虛軸長為2,特別地,當(dāng)實(shí)軸和虛軸的長相等時,稱為等軸雙曲線,其方程可設(shè)為;準(zhǔn)線:兩條準(zhǔn)線; 離心率:,雙曲線,等軸雙曲線,越小,開口越小,越大,開口越大;兩條漸近線:。如(1)雙曲線的漸近線方程是,則該雙曲線的離心率等于_(答:或);(2)雙曲線的離心率為,則=(答:4或);(3)設(shè)雙曲線(a0,b0)中,離心率e,2,則兩條漸近線夾角的取值范圍是_(答:); (3)拋物線(以為例):范圍:;焦點(diǎn):一個焦點(diǎn),其中的幾何意義是:焦點(diǎn)到準(zhǔn)線的距離;對稱性:一條對稱軸,沒有對稱中心,只有一個頂點(diǎn)(0,0);準(zhǔn)線:一條準(zhǔn)線; 離心率:,拋物線。如設(shè),則拋物線的焦點(diǎn)坐標(biāo)為_(答:);5、點(diǎn)和橢圓()的關(guān)系:(1)點(diǎn)在橢圓外;(2)點(diǎn)在橢圓上1;(3)點(diǎn)在橢圓內(nèi)6直線與圓錐曲線的位置關(guān)系:(1)相交:直線與橢圓相交; 直線與雙曲線相交,但直線與雙曲線相交不一定有,當(dāng)直線與雙曲線的漸近線平行時,直線與雙曲線相交且只有一個交點(diǎn),故是直線與雙曲線相交的充分條件,但不是必要條件;直線與拋物線相交,但直線與拋物線相交不一定有,當(dāng)直線與拋物線的對稱軸平行時,直線與拋物線相交且只有一個交點(diǎn),故也僅是直線與拋物線相交的充分條件,但不是必要條件。如(1)若直線y=kx+2與雙曲線x2-y2=6的右支有兩個不同的交點(diǎn),則k的取值范圍是_(答:(-,-1));(2)直線ykx1=0與橢圓恒有公共點(diǎn),則m的取值范圍是_(答:1,5)(5,+);(3)過雙曲線的右焦點(diǎn)直線交雙曲線于A、B兩點(diǎn),若AB4,則這樣的直線有_條(答:3);(2)相切:直線與橢圓相切;直線與雙曲線相切;直線與拋物線相切;(3)相離:直線與橢圓相離;直線與雙曲線相離;直線與拋物線相離。特別提醒:(1)直線與雙曲線、拋物線只有一個公共點(diǎn)時的位置關(guān)系有兩種情形:相切和相交。如果直線與雙曲線的漸近線平行時,直線與雙曲線相交,但只有一個交點(diǎn);如果直線與拋物線的軸平行時,直線與拋物線相交,也只有一個交點(diǎn);(2)過雙曲線1外一點(diǎn)的直線與雙曲線只有一個公共點(diǎn)的情況如下:P點(diǎn)在兩條漸近線之間且不含雙曲線的區(qū)域內(nèi)時,有兩條與漸近線平行的直線和分別與雙曲線兩支相切的兩條切線,共四條;P點(diǎn)在兩條漸近線之間且包含雙曲線的區(qū)域內(nèi)時,有兩條與漸近線平行的直線和只與雙曲線一支相切的兩條切線,共四條;P在兩條漸近線上但非原點(diǎn),只有兩條:一條是與另一漸近線平行的直線,一條是切線;P為原點(diǎn)時不存在這樣的直線;(3)過拋物線外一點(diǎn)總有三條直線和拋物線有且只有一個公共點(diǎn):兩條切線和一條平行于對稱軸的直線。如(1)過點(diǎn)作直線與拋物線只有一個公共點(diǎn),這樣的直線有_(答:2);(2)過點(diǎn)(0,2)與雙曲線有且僅有一個公共點(diǎn)的直線的斜率的取值范圍為_(答:);(3)過雙曲線的右焦點(diǎn)作直線交雙曲線于A、B兩點(diǎn),若4,則滿足條件的直線有_條(答:3);(4)對于拋物線C:,我們稱滿足的點(diǎn)在拋物線的內(nèi)部,若點(diǎn)在拋物線的內(nèi)部,則直線:與拋物線C的位置關(guān)系是_(答:相離);(5)過拋物線的焦點(diǎn)作一直線交拋物線于P、Q兩點(diǎn),若線段PF與FQ的長分別是、,則_(答:1);(6)設(shè)雙曲線的右焦點(diǎn)為,右準(zhǔn)線為,設(shè)某直線交其左支、右支和右準(zhǔn)線分別于,則和的大小關(guān)系為_(填大于、小于或等于) (答:等于);(7)求橢圓上的點(diǎn)到直線的最短距離(答:);(8)直線與雙曲線交于、兩點(diǎn)。當(dāng)為何值時,、分別在雙曲線的兩支上?當(dāng)為何值時,以AB為直徑的圓過坐標(biāo)原點(diǎn)?(答:;);7、焦半徑(圓錐曲線上的點(diǎn)P到焦點(diǎn)F的距離)的計算方法:利用圓錐曲線的第二定義,轉(zhuǎn)化到相應(yīng)準(zhǔn)線的距離,即焦半徑,其中表示P到與F所對應(yīng)的準(zhǔn)線的距離。如(1)已知橢圓上一點(diǎn)P到橢圓左焦點(diǎn)的距離為3,則點(diǎn)P到右準(zhǔn)線的距離為_(答:);(2)已知拋物線方程為,若拋物線上一點(diǎn)到軸的距離等于5,則它到拋物線的焦點(diǎn)的距離等于_;(3)若該拋物線上的點(diǎn)到焦點(diǎn)的距離是4,則點(diǎn)的坐標(biāo)為_(答:);(4)點(diǎn)P在橢圓上,它到左焦點(diǎn)的距離是它到右焦點(diǎn)距離的兩倍,則點(diǎn)P的橫坐標(biāo)為_(答:);(5)拋物線上的兩點(diǎn)A、B到焦點(diǎn)的距離和是5,則線段AB的中點(diǎn)到軸的距離為_(答:2);(6)橢圓內(nèi)有一點(diǎn),F(xiàn)為右焦點(diǎn),在橢圓上有一點(diǎn)M,使 之值最小,則點(diǎn)M的坐標(biāo)為_(答:);8、焦點(diǎn)三角形(橢圓或雙曲線上的一點(diǎn)與兩焦點(diǎn)所構(gòu)成的三角形)問題:常利用第一定義和正弦、余弦定理求解。設(shè)橢圓或雙曲線上的一點(diǎn)到兩焦點(diǎn)的距離分別為,焦點(diǎn)的面積為,則在橢圓中, ,且當(dāng)即為短軸端點(diǎn)時,最大為;,當(dāng)即為短軸端點(diǎn)時,的最大值為bc;對于雙曲線的焦點(diǎn)三角形有:;。如(1)短軸長為,離心率的橢圓的兩焦點(diǎn)為、,過作直線交橢圓于A、B兩點(diǎn),則的周長為_(答:6);(2)設(shè)P是等軸雙曲線右支上一點(diǎn),F(xiàn)1、F2是左右焦點(diǎn),若,|PF1|=6,則該雙曲線的方程為 (答:);(3)橢圓的焦點(diǎn)為F1、F2,點(diǎn)P為橢圓上的動點(diǎn),當(dāng)0時,點(diǎn)P的橫坐標(biāo)的取值范圍是(答:);(4)雙曲線的虛軸長為4,離心率e,F(xiàn)1、F2是它的左右焦點(diǎn),若過F1的直線與雙曲線的左支交于A、B兩點(diǎn),且是與等差中項,則_(答:);(5)已知雙曲線的離心率為2,F(xiàn)1、F2是左右焦點(diǎn),P為雙曲線上一點(diǎn),且,求該雙曲線的標(biāo)準(zhǔn)方程(答:);9、拋物線中與焦點(diǎn)弦有關(guān)的一些幾何圖形的性質(zhì):(1)以過焦點(diǎn)的弦為直徑的圓和準(zhǔn)線相切;(2)設(shè)AB為焦點(diǎn)弦, M為準(zhǔn)線與x軸的交點(diǎn),則AMFBMF;(3)設(shè)AB為焦點(diǎn)弦,A、B在準(zhǔn)線上的射影分別為A,B,若P為AB的中點(diǎn),則PAPB;(4)若AO的延長線交準(zhǔn)線于C,則BC平行于x軸,反之,若過B點(diǎn)平行于x軸的直線交準(zhǔn)線于C點(diǎn),則A,O,C三點(diǎn)共線。10、弦長公式:若直線與圓錐曲線相交于兩點(diǎn)A、B,且分別為A、B的橫坐標(biāo),則,若分別為A、B的縱坐標(biāo),則,若弦AB所在直線方程設(shè)為,則。特別地,焦點(diǎn)弦(過焦點(diǎn)的弦):焦點(diǎn)弦的弦長的計算,一般不用弦長公式計算,而是將焦點(diǎn)弦轉(zhuǎn)化為兩條焦半徑之和后,利用第二定義求解。如(1)過拋物線y2=4x的焦點(diǎn)作直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn),若x1+x2=6,那么|AB|等于_(答:8);(2)過拋物線焦點(diǎn)的直線交拋物線于A、B兩點(diǎn),已知|AB|=10,O為坐標(biāo)原點(diǎn),則ABC重心的橫坐標(biāo)為_(答:3);11、圓錐曲線的中點(diǎn)弦問題:遇到中點(diǎn)弦問題常用“韋達(dá)定理”或“點(diǎn)差法”求解。在橢圓中,以為中點(diǎn)的弦所在直線的斜率k=;在雙曲線中,以為中點(diǎn)的弦所在直線的斜率k=;在拋物線中,以為中點(diǎn)的弦所在直線的斜率k=。如(1)如果橢圓弦被點(diǎn)A(4,2)平分,那么這條弦所在的直線方程是 (答:);(2)已知直線y=x+1與橢圓相交于A、B兩點(diǎn),且線段AB的中點(diǎn)在直線L:x2y=0上,則此橢圓的離心率為_(答:);(3)試確定m的取值范圍,使得橢圓上有不同的兩點(diǎn)關(guān)于直線對稱(答:); 特別提醒:因?yàn)槭侵本€與圓錐曲線相交于兩點(diǎn)的必要條件,故在求解有關(guān)弦長、對稱問題時,務(wù)必別忘了檢驗(yàn)!12你了解下列結(jié)論嗎?(1)雙曲線的漸近線方程為;(2)以為漸近線(即與雙曲線共漸近線)的雙曲線方程為為參數(shù),0)。如與雙曲線有共同的漸近線,且過點(diǎn)的雙曲線方程為_(答:)(3)中心在原點(diǎn),坐標(biāo)軸為對稱軸的橢圓、雙曲線方程可設(shè)為;(4)橢圓、雙曲線的通徑(過焦點(diǎn)且垂直于對稱軸的弦)為,焦準(zhǔn)距(焦點(diǎn)到相應(yīng)準(zhǔn)線的距離)為,拋物線的通徑為,焦準(zhǔn)距為; (5)通徑是所有焦點(diǎn)弦(過焦點(diǎn)的弦)中最短的弦;(6)若拋物線的焦點(diǎn)弦為AB,則;(7)若OA、OB是過拋物線頂點(diǎn)O的兩條互相垂直的弦,則直線AB恒經(jīng)過定點(diǎn)13動點(diǎn)軌跡方程:(1)求軌跡方程的步驟:建系、設(shè)點(diǎn)、列式、化簡、確定點(diǎn)的范圍;(2)求軌跡方程的常用方法:直接法:直接利用條件建立之間的關(guān)系;如已知動點(diǎn)P到定點(diǎn)F(1,0)和直線的距離之和等于4,求P的軌跡方程(答:或);待定系數(shù)法:已知所求曲線的類型,求曲線方程先根據(jù)條件設(shè)出所求曲線的方程,再由條件確定其待定系數(shù)。如線段AB過x軸正半軸上一點(diǎn)M(m,0),端點(diǎn)A、B到x軸距離之積為2m,以x軸為對稱軸,過A、O、B三點(diǎn)作拋物線,則此拋物線方程為(答:);定義法:先根據(jù)條件得出動點(diǎn)的軌跡是某種已知曲線,再由曲線的定義直接寫出動點(diǎn)的軌跡方程;如(1)由動點(diǎn)P向圓作兩條切線PA、PB,切點(diǎn)分別為A、B,APB=600,則動點(diǎn)P的軌跡方程為(答:);(2)點(diǎn)M與點(diǎn)F(4,0)的距離比它到直線的距離小于1,則點(diǎn)M的軌跡方程是_ (答:);(3) 一動圓與兩圓M:和N:都外切,則動圓圓心的軌跡為(答:雙曲線的一支);代入轉(zhuǎn)移法:動點(diǎn)依賴于另一動點(diǎn)的變化而變化,并且又在某已知曲線上,則可先用的代數(shù)式表示,再將代入已知曲線得要求的軌跡方程;如動點(diǎn)P是拋物線上任一點(diǎn),定點(diǎn)為,點(diǎn)M分所成的比為2,則M的軌跡方程為_(答:);參數(shù)法:當(dāng)動點(diǎn)坐標(biāo)之間的關(guān)系不易直接找到,也沒有相關(guān)動點(diǎn)可用時,可考慮將均用一中間變量(參數(shù))表示,得參數(shù)方程,再消去參數(shù)得普通方程)。如(1)AB是圓O的直徑,且|AB|=2a,M為圓上一動點(diǎn),作MNAB,垂足為N,在OM上取點(diǎn),使,求點(diǎn)的軌跡。(答:);(2)若點(diǎn)在圓上運(yùn)動,則點(diǎn)的軌跡方程是_(答:);(3)過拋物線的焦點(diǎn)F作直線交拋物線于A、B兩點(diǎn),則弦AB的中點(diǎn)M的軌跡方程是_(答:);注意:如果問題中涉及到平面向量知識,那么應(yīng)從已知向量的特點(diǎn)出發(fā),考慮選擇向量的幾何形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化,還是選擇向量的代數(shù)形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化。如已知橢圓的左、右焦點(diǎn)分別是F1(c,0)、F2(c,0),Q是橢圓外的動點(diǎn),滿足點(diǎn)P是線段F1Q與該橢圓的交點(diǎn),點(diǎn)T在線段F2Q上,并且滿足(1)設(shè)為點(diǎn)P的橫坐標(biāo),證明;(2)求點(diǎn)T的軌跡C的方程;(3)試問:在點(diǎn)T的軌跡C上,是否存在點(diǎn)M,使F1MF2的面積S=若存在,求F1MF2的正切值;若不存在,請說明理由. (答:(1)略;(2);(3)當(dāng)時不存在;當(dāng)時存在,此時F1MF22)曲線與曲線方程、軌跡與軌跡方程是兩個不同的概念,尋求軌跡或軌跡方程時應(yīng)注意軌跡上特殊點(diǎn)對軌跡的“完備性與純粹性”的影響.在與圓錐曲線相關(guān)的綜合題中,常借助于“平面幾何性質(zhì)”數(shù)形結(jié)合(如角平分線的雙重身份對稱性、利用到角公式)、“方程與函數(shù)性質(zhì)”化解析幾何問題為代數(shù)問題、“分類討論思想”化整為零分化處理、“求值構(gòu)造等式、求變量范圍構(gòu)造不等關(guān)系”等等.如果在一條直線上出現(xiàn)“三個或三個以上的點(diǎn)”,那么可選擇應(yīng)用“斜率或向量”為橋梁轉(zhuǎn)化.14、解析幾何與向量綜合時可能出現(xiàn)的向量內(nèi)容:(1) 給出直線的方向向量或;(2)給出與相交,等于已知過的中點(diǎn);(3)給出,等于已知是的中點(diǎn);(4)給出,等于已知與的中點(diǎn)三點(diǎn)共線;(5) 給出以下情形之一:;存在實(shí)數(shù);若存在實(shí)數(shù),等于已知三點(diǎn)共線.(6) 給出,等于已知是的定比分點(diǎn),為定比,即(7) 給出,等于已知,即是直角,給出,等于已知是鈍角, 給出,等于已知是銳角,(8)給出,等于已知是的平分線/(9)在平行四邊形中,給出,等于已知是菱形;(10) 在平行四邊形中,給出,等于已知是矩形;(11)在中,給出,等于已知是的外心(三角形外接圓的圓心,三角形的外心是三角形三邊垂直平分線的交點(diǎn));(12) 在中,給出,等于已知是的重心(三角形的重心是三角形三條中線的交點(diǎn));(13)在中,給出,等于已知是的垂心(三角形的垂心是三角形三條高的交點(diǎn));(14)在中,給出等于已知通過的內(nèi)心;(15)在中,給出等于已知是的內(nèi)心(三角形內(nèi)切圓的圓心,三角形的內(nèi)心是三角形三條角平分線的交點(diǎn));(16) 在中,給出,等于已知是中邊的中線;求解圓錐曲線問題的幾種措施 圓錐曲線中的知識綜合性較強(qiáng),因而解題時就需要運(yùn)用多種基礎(chǔ)知識、采用多種數(shù)學(xué)手段來處理問題。熟記各種定義、基本公式、法則固然重要,但要做到迅速、準(zhǔn)確解題,還須掌握一些方法和技巧。一. 緊扣定義,靈活解題靈活運(yùn)用定義,方法往往直接又明了。例1. 已知點(diǎn)A(3,2),F(xiàn)(2,0),雙曲線,P為雙曲線上一點(diǎn)。求的最小值。 解析:如圖所示, 雙曲線離心率為2,F(xiàn)為右焦點(diǎn),由第二定律知即點(diǎn)P到準(zhǔn)線距離。 二. 引入?yún)?shù),簡捷明快參數(shù)的引入,尤如化學(xué)中的催化劑,能簡化和加快問題的解決。例2. 求共焦點(diǎn)F、共準(zhǔn)線的橢圓短軸端點(diǎn)的軌跡方程。 解:取如圖所示的坐標(biāo)系,設(shè)點(diǎn)F到準(zhǔn)線的距離為p(定值),橢圓中心坐標(biāo)為M(t,0)(t為參數(shù)) ,而 再設(shè)橢圓短軸端點(diǎn)坐標(biāo)為P(x,y),則 消去t,得軌跡方程三. 數(shù)形結(jié)合,直觀顯示將“數(shù)”與“形”兩者結(jié)合起來,充分發(fā)揮“數(shù)”的嚴(yán)密性和“形”的直觀性,以數(shù)促形,用形助數(shù),結(jié)合使用,能使復(fù)雜問題簡單化,抽象問題形象化。熟練的使用它,常能巧妙地解決許多貌似困難和麻煩的問題。例3. 已知,且滿足方程,又,求m范圍。 解析:的幾何意義為,曲線上的點(diǎn)與點(diǎn)(3,3)連線的斜率,如圖所示 四. 應(yīng)用平幾,一目了然用代數(shù)研究幾何問題是解析幾何的本質(zhì)特征,因此,很多“解幾”題中的一些圖形性質(zhì)就和“平幾”知識相關(guān)聯(lián),要抓住關(guān)鍵,適時引用,問題就會迎刃而解。例4. 已知圓和直線的交點(diǎn)為P、Q,則的值為_。 解: 五. 應(yīng)用平面向量,簡化解題向量的坐標(biāo)形式與解析幾何有機(jī)融為一體,因此,平面向量成為解決解析幾何知識的有力工具。例5. 已知橢圓:,直線:,P是上一點(diǎn),射線OP交橢圓于一點(diǎn)R,點(diǎn)Q在OP上且滿足,當(dāng)點(diǎn)P在上移動時,求點(diǎn)Q的軌跡方程。 分析:考生見到此題基本上用的都是解析幾何法,給解題帶來了很大的難度,而如果用向量共線的條件便可簡便地解出。 解:如圖,共線,設(shè),則, 點(diǎn)R在橢圓上,P點(diǎn)在直線上 , 即 化簡整理得點(diǎn)Q的軌跡方程為: (直線上方部分)六. 應(yīng)用曲線系,事半功倍利用曲線系解題,往往簡捷明快,收到事半功倍之效。所以靈活運(yùn)用曲線系是解析幾何中重要的解題方法和技巧之一。例6. 求經(jīng)過兩圓和的交點(diǎn),且圓心在直線上的圓的方程。 解:設(shè)所求圓的方程為: 則圓心為,在直線上 解得 故所求的方程為七. 巧用點(diǎn)差,簡捷易行在圓錐曲線中求線段中點(diǎn)軌跡方程,往往采用點(diǎn)差法,此法比其它方法更簡捷一些。例7. 過點(diǎn)A(2,1)的直線與雙曲線相交于兩點(diǎn)P1、P2,求線段P1P2中點(diǎn)的軌跡方程。 解:設(shè),則 得 即 設(shè)P1P2的中點(diǎn)為,則 又,而P1、A、M、P2共線 ,即 中點(diǎn)M的軌跡方程是解析幾何題怎么解高考解析幾何試題一般共有4題(2個選擇題, 1個填空題, 1個解答題), 共計30分左右, 考查的知識點(diǎn)約為20個左右. 其命題一般緊扣課本, 突出重點(diǎn), 全面考查. 選擇題和填空題考查直線, 圓, 圓錐曲線, 參數(shù)方程和極坐標(biāo)系中的基礎(chǔ)知識. 解答題重點(diǎn)考查圓錐曲線中的重要知識點(diǎn), 通過知識的重組與鏈接, 使知識形成網(wǎng)絡(luò), 著重考查直線與圓錐曲線的位置關(guān)系, 求解有時還要用到平幾的基本知識,這點(diǎn)值得考生在復(fù)課時強(qiáng)化. 例1 已知點(diǎn)T是半圓O的直徑AB上一點(diǎn),AB=2、OT=t (0t1),以AB為直腰作直角梯形,使垂直且等于AT,使垂直且等于BT,交半圓于P、Q兩點(diǎn),建立如圖所示的直角坐標(biāo)系.(1)寫出直線的方程; (2)計算出點(diǎn)P、Q的坐標(biāo); (3)證明:由點(diǎn)P發(fā)出的光線,經(jīng)AB反射后,反射光線通過點(diǎn)Q. 講解: 通過讀圖, 看出點(diǎn)的坐標(biāo).(1 ) 顯然, 于是 直線的方程為;(2)由方程組解出、; (3), . 由直線PT的斜率和直線QT的斜率互為相反數(shù)知,由點(diǎn)P發(fā)出的光線經(jīng)點(diǎn)T反射,反射光線通過點(diǎn)Q.需要注意的是, Q點(diǎn)的坐標(biāo)本質(zhì)上是三角中的萬能公式, 有趣嗎?例2 已知直線l與橢圓有且僅有一個交點(diǎn)Q,且與x軸、y軸分別交于R、S,求以線段SR為對角線的矩形ORPS的一個頂點(diǎn)P的軌跡方程 講解:從直線所處的位置, 設(shè)出直線的方程, 由已知,直線l不過橢圓的四個頂點(diǎn),所以設(shè)直線l的方程為代入橢圓方程 得 化簡后,得關(guān)于的一元二次方程 于是其判別式由已知,得=0即 在直線方程中,分別令y=0,x=0,求得 令頂點(diǎn)P的坐標(biāo)為(x,y), 由已知,得 代入式并整理,得 , 即為所求頂點(diǎn)P的軌跡方程方程形似橢圓的標(biāo)準(zhǔn)方程, 你能畫出它的圖形嗎? 例3已知雙曲線的離心率,過的直線到原點(diǎn)的距離是 (1)求雙曲線的方程; (2)已知直線交雙曲線于不同的點(diǎn)C,D且C,D都在以B為圓心的圓上,求k的值. 講解:(1)原點(diǎn)到直線AB:的距離. 故所求雙曲線方程為 (2)把中消去y,整理得 . 設(shè)的中點(diǎn)是,則 即故所求k=.為了求出的值, 需要通過消元, 想法設(shè)法建構(gòu)的方程. 例4 已知橢圓C的中心在原點(diǎn),焦點(diǎn)F1、F2在x軸上,點(diǎn)P為橢圓上的一個動點(diǎn),且F1PF2的最大值為90,直線l過左焦點(diǎn)F1與橢圓交于A、B兩點(diǎn),ABF2的面積最大值為12 (1)求橢圓C的離心率; (2)求橢圓C的方程 講解:(1)設(shè), 對 由余弦定理, 得,解出 (2)考慮直線的斜率的存在性,可分兩種情況: i) 當(dāng)k存在時,設(shè)l的方程為 橢圓方程為 由 得 .于是橢圓方程可轉(zhuǎn)化為 將代入,消去得 ,整理為的一元二次方程,得 .則x1、x2是上述方程的兩根且,也可這樣求解: ,AB邊上的高 ii) 當(dāng)k不存在時,把直線代入橢圓方程得 由知S的最大值為 由題意得=12 所以 故當(dāng)ABF2面積最大時橢圓的方程為: 下面給出本題的另一解法,請讀者比較二者的優(yōu)劣:設(shè)過左焦點(diǎn)的直線方程為:(這樣設(shè)直線方程的好處是什么?還請讀者進(jìn)一步反思反思.)橢圓的方程為:由得:于是橢圓方程可化為:把代入并整理得:于是是上述方程的兩根.,AB邊上的高,從而當(dāng)且僅當(dāng)m=0取等號,即由題意知, 于是 .故當(dāng)ABF2面積最大時橢圓的方程為: 例5 已知直線與橢圓相交于A、B兩點(diǎn),且線段AB的中點(diǎn)在直線上.()求此橢圓的離心率;(2 )若橢圓的右焦點(diǎn)關(guān)于直線的對稱點(diǎn)的在圓上,求此橢圓的方程.講解:(1)設(shè)A、B兩點(diǎn)的坐標(biāo)分別為 得, 根據(jù)韋達(dá)定理,得 線段AB的中點(diǎn)坐標(biāo)為(). 由已知得,故橢圓的離心率為 . (2)由(1)知從而橢圓的右焦點(diǎn)坐標(biāo)為 設(shè)關(guān)于直線的對稱點(diǎn)為解得 由已知得 ,故所求的橢圓方程為 .例6 已知M:軸上的動點(diǎn),QA,QB分別切M于A,B兩點(diǎn),(1)如果,求直線MQ的方程;(2)求動弦AB的中點(diǎn)P的軌跡方程.講解:(1)由,可得由射影定理,得 在RtMOQ中,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 車輛質(zhì)押貸款及汽車租賃及保養(yǎng)服務(wù)合同
- 產(chǎn)權(quán)式酒店租賃合同示范文本及經(jīng)營風(fēng)險控制
- 醫(yī)療健康園區(qū)場站委托運(yùn)營管理協(xié)議
- 產(chǎn)業(yè)園區(qū)場地租賃合同行政備案及產(chǎn)業(yè)扶持政策
- 餐飲企業(yè)特色餐廳承包經(jīng)營合同范本
- 茶葉原料種植基地合作合同樣本
- 柴油市場拓展與銷售獎勵合同范本
- 草場租賃與水資源保護(hù)與利用協(xié)議
- 稅務(wù)籌劃與財務(wù)代理一體化服務(wù)合同
- 金融投資代理居間業(yè)務(wù)合同
- 孕期保健主題宣教培訓(xùn)課件
- 《高血壓健康教育規(guī)范》
- 骨科手術(shù)后的康復(fù)用具與輔助器具
- 小學(xué)特色課程《口風(fēng)琴課程》校本教材
- 電腦教室搬遷方案
- 《如何寫文獻(xiàn)綜述》課件
- 汽車美容店計劃書案例
- 2023高教版中職中國特色社會主義基礎(chǔ)模塊課程標(biāo)準(zhǔn)
- 信息機(jī)房火災(zāi)事故應(yīng)急處置方案
- 火災(zāi)調(diào)查專業(yè)技能.全國比武單項科目解析
- 抑郁癥健康教育
評論
0/150
提交評論