




已閱讀5頁,還剩30頁未讀, 繼續(xù)免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
791CHAPTER19NEURALNETWORKSINFEEDBACKCONTROLSYSTEMSF.L.LewisAutomationandRoboticsResearchInstituteUniversityofTexasatArlingtonFortWorth,TexasShuzhiSamGeDepartmentofElectricalandComputerEngineeringNationalUniversityofSingaporeSingapore1INTRODUCTION7922BACKGROUND7932.1NeuralNetworks7932.2NNControlTopologies7943FEEDBACKLINEARIZATIONDESIGNOFNNTRACKINGCONTROLLERS7953.1MultilayerNNController7963.2Single-LayerNNController7983.3FeedbackLinearizationofNonlinearSystemsUsingNNs7983.4PartitionedNNsandInputPreprocessing7994NNCONTROLFORDISCRETE-TIMESYSTEMS8005MULTILOOPNNFEEDBACKCONTROLSTRUCTURES8005.1BacksteppingNeurocontrollerforElectricallyDrivenRobot8015.2CompensationofFlexibleModesandHigh-FrequencyDynamicsUsingNNs8025.3ForceControlwithNeuralNets8036FEEDFORWARDCONTROLSTRUCTURESFORACTUATORCOMPENSATION8046.1FeedforwardNeurocontrollerforSystemswithUnknownDeadzone8046.2DynamicInversionNeurocontrollerforSystemswithBacklash8057NNOBSERVERSFOROUTPUTFEEDBACKCONTROL8068REINFORCEMENTLEARNINGCONTROLUSINGNNs8078.1NNReinforcementLearningController8088.2AdaptiveReinforcementLearningUsingFuzzyLogicCritic8099OPTIMALCONTROLUSINGNNs8109.1NNH2ControlUsingtheHamiltonJacobiBellmanEquation8119.2NNHControlUsingtheHamiltonJacobiIsaacsEquation81310APPROXIMATEDYNAMICPROGRAMMINGANDADAPTIVECRITICS81511HISTORICALDEVELOPMENT,REFERENCEDWORK,ANDFURTHERSTUDY81711.1NNforFeedbackControl81711.2ApproximateDynamicProgramming819REFERENCES821BIBLIOGRAPHY825Mechanical Engineers Handbook: Instrumentation, Systems, Controls, and MEMS, Volume 2, Third Edition.Edited by Myer KutzCopyright 2006 by John Wiley & Sons, Inc.792NeuralNetworksinFeedbackControlSystems1INTRODUCTIONDynamicalsystemsareubiquitousinnatureandincludenaturallyoccurringsystemssuchasthecellandmorecomplexbiologicalorganisms,theinteractionsofpopulations,andsoon,aswellasman-madesystemssuchasaircraft,satellites,andinteractingglobaleconomies.VonBertalanffy1wereamongthersttoprovideamoderntheoryofsystemsatthebeginningofthecentury.Systemsarecharacterizedashavingoutputsthatcanbemeasured,inputsthatcanbemanipulated,andinternaldynamics.Feedbackcontrolinvolvescomputingsuitablecontrolinputs,basedonthedifferencebetweenobservedanddesiredbehavior,foradynam-icalsystemsuchthattheobservedbehaviorcoincideswithadesiredbehaviorprescribedbytheuser.Allbiologicalsystemsarebasedonfeedbackforsurvival,witheventhesimplestofcellsusingchemicaldiffusionbasedonfeedbacktocreateapotentialdifferenceacrossthemembranetomaintainitshomeostasis,orrequiredequilibriumconditionforsurvival.Volterrawasthersttoshowthatfeedbackisresponsibleforthebalanceoftwopopulationsofshinapond,andDarwinshowedthatfeedbackoverextendedtimeperiodsprovidesthesubtlepressuresthatcausetheevolutionofspecies.Thereisalargeandwell-establishedbodyofdesignandanalysistechniquesforfeed-backcontrolsystemswhichhasbeenresponsibleforsuccessesintheindustrialrevolution,shipandaircraftdesign,andthespaceage.Designapproachesincludeclassicaldesignmethodsforlinearsystems,multivariablecontrol,nonlinearcontrol,optimalcontrol,robustcontrol,Hcontrol,adaptivecontrol,andothers.Manysystemsonedesirestocontrolhaveunknowndynamics,modelingerrors,andvarioussortsofdisturbances,uncertainties,andnoise.This,coupledwiththeincreasingcomplexityoftodaysdynamicalsystems,createsaneedforadvancedcontroldesigntechniquesthatovercomelimitationsontraditionalfeed-backcontroltechniques.Inrecentyears,therehasbeenagreatdealofefforttodesignfeedbackcontrolsystemsthatmimicthefunctionsoflivingbiologicalsystems.Therehasbeengreatinterestrecentlyinuniversalmodel-freecontrollersthatdonotneedamathematicalmodelofthecontrolledplantbutmimicthefunctionsofbiologicalprocessestolearnaboutthesystemstheyarecontrollingonline,sothatperformanceimprovesautomatically.Techniquesincludefuzzylogiccontrol,whichmimicslinguisticandreasoningfunctions,andarticialneuralnetworks(NNs),whicharebasedonbiologicalneuronalstructuresofinterconnectednodes,asshowninFig.1.Bynow,thetheoryandapplicationsofthesenonlinearnetworkstructuresinfeedbackcontrolhavebeenwelldocumented.ItisgenerallyunderstoodthatNNsprovideanelegantextensionofadaptivecontroltechniquestononlinearlyparameterizedlearningsystems.ThischaptershowshowNNsfulllthepromiseofprovidingmodel-freelearningcon-trollersforaclassofnonlinearsystems,inthesensethatastructuralorparameterizedmodelofthesystemdynamicsisnotneeded.Thecontrolstructuresdiscussedaremultiloopcon-trollerswithNNsinsomeoftheloopsandanoutertrackingunity-gainfeedbackloop.Throughout,therearerepeatabledesignalgorithmsandguaranteesofsystemperformance,includingbothsmalltrackingerrorsandboundedNNweights.Itisshownthatasuncertaintyaboutthecontrolledsystemincreasesorasonedesirestoconsiderhumanuserinputsathigherlevelsofabstraction,theNNcontrollersacquiremoreandmorestructure,eventuallyacquiringahierarchicalstructurethatresemblessomeoftheelegantarchitecturesproposedbycomputerscienceengineersusinghigh-leveldesignapproachesbasedoncognitivelin-guistics,reinforcementlearning,psychologicaltheories,adaptivecritics,oroptimaldynamicprogrammingtechniques.ManyresearchershavecontributedtothedevelopmentofarmfoundationforanalysisanddesignofNNsincontrolsystemapplications.SeeSection11onhistoricaldevelopmentandfurtherstudy.2Background793DendritesNucleusMyelinNode of RanvierAxonCell bodyAxon terminalsSynapsesFigure1Nervoussystemcell.(Withpermissionfrom/jgjohnso/index.html.)2BACKGROUND2.1NeuralNetworksThemultilayerNNismodeledbasedonthestructureofbiologicalnervoussystems(seeFig.1)andprovidesanonlinearmappingfromaninputspaceRnintoanoutputspaceRm.Itspropertiesincludefunctionapproximation,learning,generalization,classication,andsoon.Itisknownthatthetwo-layerNNhassufcientgeneralityforclosed-loopcontrolpur-poses.Thetwo-layerNNshowninFig.2consistsoftwolayersofweightsandthresholdsandhasahiddenlayerandanoutputlayer.Theinputfunctionx(t)hasncomponents,thehiddenlayerhasLneurons,andtheoutputlayerhasmneurons.OnemaydescribetheNNmathematicallyasTTyW(Vx)whereVisamatrixofrst-layerweightsandWisamatrixofsecond-layerweights.Thesecond-layerthresholdsareincludedastherstcolumnofthematrixWTbyaugmentingthevectoractivationfunction()by1intherstposition.Similarly,therst-layerthresh-oldsareincludedastherstcolumnofthematrixVTbyaugmentingvectorxby1intherstposition.ThemainpropertyofNNsweareconcernedwithforcontrolandestimationpurposesisthefunctionapproximationproperty.2,3Let(x)beasmoothfunctionfromRnRm.Then,itcanbeshownthatiftheactivationfunctionsaresuitablyselectedandisrestrictedtoacompactsetSRn,thenforsomesufcientlylargenumberLofhidden-layerneurons,thereexistweightsandthresholdssuchthatonehasTT(x)W(Vx)(x)with(x)suitablysmall.Here,(x)iscalledtheneuralnetworkfunctionalapproximationerror.Infact,foranychoiceofapositivenumberN,onecanndaNNoflargeenoughsizeLsuchthat(x)NforallxS.FindingasuitableNNforapproximationinvolvesadjustingtheparametersVandWtoobtainagoodtto(x).Notethattuningoftheweightsincludestuningofthethresholdsaswell.TheneuralnetisnonlinearintheparametersV,whichmakesadjustmentoftheseparametersdifcultandwasinitiallyoneofthemajorhurdlestobeovercomeinclosed-794NeuralNetworksinFeedbackControlSystemsFigure2Two-layerNN.loopfeedbackcontrolapplications.Iftherst-layerweightsVarexed,thentheNNislinearintheadjustableparametersW(LIP).Ithasbeenshownthat,iftherst-layerweightsVaresuitablyxed,thentheapproximationpropertycanbesatisedbyselectingonlytheoutputweightsWforgoodapproximation.Forthistooccur,(VTx)mustprovideabasis.Itisnotalwaysstraightforwardtopickabasis(VTx).Ithasbeenshownthatthecerebellarmodelarticulationcontroller(CMAC),4radialbasisfunction(RBF),5fuzzylogic,6andotherstructuredNNapproachesallowonetochooseabasisbysuitablypartitioningthecompactsetS.However,thiscanbetedious.Ifoneselectstheactivationfunctionssuitably(e.g.,assigmoids),thenitwasshowninRef.7that(VTx)isalmostalwaysabasisifisselectedrandomly.2.2NNControlTopologiesFeedbackcontrolinvolvesthemeasurementofoutputsignalsfromadynamicalsystemorplantandtheuseofthedifferencebetweenthemeasuredvaluesandcertainprescribeddesiredvaluestocomputesysteminputsthatcausethemeasuredvaluestofollow,ortrack,thedesiredvalues.Infeedbackcontroldesignitiscrucialtoguaranteebyrigorousmeansboththetrackingperformanceandtheinternalstabilityorboundednessofallvariables.Failuretodosocancauseseriousproblemsintheclosed-loopsystem,includinginstabilityandunboundednessofsignalsthatcanresultinsystemfailureordestruction.TheuseofNNsincontrolsystemswasrstproposedbyWerbos8andNarendraandParthasarathy.9NNcontrolhashadtwomajorthrusts:approximatedynamicprogramming,3FeedbackLinearizationDesignofNNTrackingControllers795PlantControlu(t)Outputy(t)NN controllerNN systemidentifierEstimatedoutput )(tyIdentificationerrorDesiredoutput)(tydPlantControlu(t)Outputy(t)NN controllerDesiredoutput)(tydTracingerrorPlantControlu(t)Outputy(t)NN NNDesiredoutput)(tydTrackingerror(a)(b)(c)u(t)y(t)NN controllerNN systemidentifieroutput )(tyerroroutput)(tydu(t)y(t)NN controlleroutput)(tyderroru(t)y(t)NN NNoutput)(tyderrorcontroller 1controller 2Figure3NNcontroltopologies:(a)indirectscheme;(b)directscheme;(c)feedback/feedforwardscheme.whichusesNNstoapproximatelysolvetheoptimalcontrolproblem,andNNsinclosed-loopfeedbackcontrol.Manyresearchershavecontributedtothedevelopmentoftheseelds.SeeSection11andtheReferencesandBibliography.SeveralNNfeedbackcontroltopologiesareillustratedinFig.3,10someofwhicharederivedfromstandardtopologiesinadaptivecontrol.11Solidlinesdenotecontrolsignalowloopswhiledashedlinesdenotetuningloops.Therearebasicallytwosortsoffeedbackcontroltopologies:indirectanddirecttechniques.InindirectNNcontroltherearetwofunc-tions;inanidentierblock,theNNistunedtolearnthedynamicsoftheunknownplant,andthecontrollerblockthenusesthisinformationtocontroltheplant.DirectcontrolismoreefcientandinvolvesdirectlytuningtheparametersofanadjustableNNcontroller.ThechallengeinusingNNsforfeedbackcontrolpurposesistoselectasuitablecontrolsystemstructureandthentodemonstrateusingmathematicallyacceptabletechniqueshowtheNNweightscanbetunedsothatclosed-loopstabilityandperformanceareguaranteed.Inthischapter,weshallshowdifferentmethodsofNNcontrollerdesignthatyieldguaranteedperformanceforsystemsofdifferentstructureandcomplexity.Manyresearchershavepar-ticipatedinthedevelopmentofthetheoreticalfoundationforNNsincontrolapplications.SeeSection11.3FEEDBACKLINEARIZATIONDESIGNOFNNTRACKINGCONTROLLERSInthissection,theobjectiveistodesignanNNfeedbackcontrollerthatcausesaroboticsystemtofollow,ortrack,aprescribedtrajectoryorpath.Thedynamicsoftherobotareunknown,andthereareunknowndisturbances.Thedynamicsofann-linkrobotmanipulatormaybeexpressedas12796NeuralNetworksinFeedbackControlSystemsM(q)q嬠V(q,q)(q嬠G(q)嬠F(q)嬠嬠嬠嬠(1)mdwithq(t)嬠Rnthejointvariablevector,M(q)aninertiamatrix,Vmacentripetal/Coriolismatrix,G(q)agravityvector,andF(嬠)representingfrictionterms.Boundedunknowndis-turbancesandmodelingerrorsaredenotedby嬠dandthecontrolinputtorqueis嬠(t).Thesliding-modecontrolapproachofSlotine13,14canbegeneralizedtoNNcontrolsystems.Givenadesiredarmtrajectoryqd(t)嬠Rn,denethetrackingerrore(t)嬠qd(t)嬠q(t)andtheslidingvariableerrorr嬠嬠嬠e,where嬠嬠嬠T嬠0.Asliding-modemanifoldeisdenedbyr(t)嬠0.TheNNtrackingcontrollerisdesignedusingafeedbacklinearizationapproachtoguaranteethatr(t)isforcedintoaneighborhoodofthismanifold.Denethenonlinearrobotfunction(x)嬠M(q)(q嬠嬠e)嬠V(q,q)(q嬠嬠e)嬠G(q)嬠F(q)(2)dmdwiththeknownvectorx(t)ofmeasuredsignalssuitablydenedintermsofe(t),qd(t).TheNNinputvectorxcanbeselected,forinstance,asTTTTTTx嬠eeqqq(3)ddd3.1MultilayerNNControllerANNcontrollermaybedesignedbasedonthefunctionalapproximationpropertiesofNNs,asshowninRef.15.Thus,assumethat(x)isunknownandgivenapproximatelyastheoutputofaNNwithunknownidealweightsW,Vsothat(x)嬠WT嬠(VTx)嬠嬠with嬠anapproximationerror.Thekeyisnowtoapproximate(x)bytheNNfunctionalestimate,withthecurrent(estimated)NNweightsasprovidedbythetuningTT(x)嬠W嬠(Vx)V,Walgorithms.Thisisnonlinearinthetunableparameters.Standardadaptivecontrolap-VproachesonlyallowLIPcontrollers.NowselectthecontrolinputTT嬠嬠W嬠(Vx)嬠Kr嬠v(4)vwithKvasymmetricpositive-denite(PD)gainandv(t)acertainrobustifyingfunctiondetailedinRef.15.ThisNNcontrolstructureisshowninFig.4.TheouterPDtrackingloopguaranteesrobustbehavior.TheinnerloopcontainingtheNNisknownasafeedbacklinearizationloop,16andtheNNeffectivelylearnstheunknowndynamicsonlinetocancelthenonlinearitiesofthesystem.LettheestimatedsigmoidJacobianbe.Notethatthisjacobianis嬠嬠嬠d嬠(z)/dz嬠Tz嬠VxeasilycomputedintermsofthecurrentNNweights.Then,thenextresultisrepresentativeofthesortoftheoremsthatoccurinNNfeedbackcontroldesign.ItshowshowtotuneortraintheNNweightstoobtainguaranteedclosed-loopstability.Theorem(NNWeightTuningforStability)Letthedesiredtrajectoryqd(t)anditsderivativesbebounded.Takethecontrolinputfor(1)as(4).LetNNweighttuningbeprovidedbyTTTTTW嬠F嬠r嬠F嬠嬠Vxr嬠嬠F嬠r嬠WV嬠Gx(嬠嬠Wr)嬠嬠G嬠r嬠V(5)withanyconstantmatricesF嬠FT嬠0,G嬠GT嬠0,andscalartuningparameter嬠嬠0.Initializetheweightestimatesas.Thentheslidingerrorr(t)andNNW嬠0,V嬠randomweightestimatesareuniformlyultimatelybounded.W,V3FeedbackLinearizationDesignofNNTrackingControllers797Robot IRobust v(t)Tracking loopf(x)rNonlinear inner loop=.=.=.Robot system IRobust controlTracking Nonlinear =.=.=.=.=.=.termqdeeeKvqqqqdqdqdFigure4NNrobotcontroller.Aproofofstabilityisalwaysneededincontrolsystemsdesigntoguaranteeperform-ance.Here,thestabilityisprovenusingnonlinearstabilitytheory(e.g.,anextensionofLyapunovstheorem).ALyapunovenergyfunctionisdenedas1T1T11T1LrM(q)rtrWFW)trVFV)222wheretheweightestimationerrorsare,withtrthetraceop-VVV,WWWeratorsothattheFrobeniusnormoftheweighterrorsisused.Intheproof,itisshownthattheLyapunovfunctionderivativeisnegativeoutsideacompactset.Thisguaranteestheboundednessoftheslidingvariableerrorr(t)aswellastheNNweights.Specicboundsonr(t)andtheNNweightsaregiveninRef.15.Thersttermsof(4)areveryclosetothe(continuous-time)backpropagationalgorithm.17ThelasttermscorrespondtoNarendrase-modication18extendedtononlinear-in-the-parametersadaptivecontrol.Robustadaptivetuningmethodsfornonlinear-in-the-parametersNNcontrollershavebeenderivedbasedontheadaptivecontrolapproachesofe-modication,Ioannous-modication,orprojectionmethods.ThesetechniquesarecomparedbyIoannouandSun19forstandardadaptivecontrolsystems.RobustnessandPassivityoftheNNWhenTunedOnlineThoughtheNNinFig.4isstatic,sinceitistunedonline,itbecomesadynamicsystemwithitsowninternalstates(e.g.,theweights).ItcanbeshownthatthetuningalgorithmsgiveninthetheoremmaketheNNstrictlypassiveinacertainnovelstrongsenseknownasstate-strictpassivity,sothattheenergyintheinternalstatesisboundedabovebythepowerdeliveredtothesystem.Thismakestheclosed-loopsystemrobusttoboundedun-knowndisturbances.Thisstrictpassivityaccountsforthefactthatnopersistenceofexcitationconditionisneeded.Standardadaptivecontrolapproachesassumethattheunknownfunction(x)islinearintheunknownparametersandacertainregressionmatrixmustbecomputed.Bycontrast,theNNdesignapproachallowsfornonlinearityintheparameters,andineffecttheNNlearnsitsownbasissetonlinetoapproximatetheunknownfunction(x).Itisnotrequired798NeuralNetworksinFeedbackControlSystemsNonlinear IRobust ur(t)Tracking loopr(t)Nf(x)controlg(x)Xdx(t)e(t)Nonlinear system IRobust control()Tracki)Nonlinear inner loops)control()()()()termKvFeedback lineFigure5FeedbacklinearizationNNcontroller.tondaregressionmatrix.ThisisaconsequenceoftheNNuniversalapproximationprop-erty.3.2Single-LayerNNControllerIftherst-layerweightsVarexedsothat,with毠(x)selectedTTT(x)毠W毠(Vx)毠W毠(x)asabasis,thenonehasthesimpliedtuningalgorithmfortheoutputlayerweightsgivenbyTW毠F毠(x)r毠毠F毠r毠WThen,theNNisLIPandthetuningalgorithmresemblesthoseusedinadaptivecontrol.However,NNdesignstilloffersanadvantageinthattheNNprovidesauniversalbasisforaclassofsystems,whileadaptivecontrolrequiresonetondaregressionmatrix,whichservesasabasisforeachparticularsystem.3.3FeedbackLinearizationofNonlinearSystemsUsingNNsManysystemsofinterestinindustrial,aerospace,andU.S.DepartmentofDefense(DoD)applicationsareintheafneform,withd(t)a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農民家庭農場創(chuàng)建合同
- 電子商務合作協(xié)議簽署流程及要點
- 國際進出口貿易代理協(xié)議
- 工程管理中的溝通藝術試題及答案
- 行政管理公文寫作模擬考試及試題及答案
- 行政管理的關鍵績效指標探索與試題及答案
- 2025:加工承攬合同與買賣合同的辨別及應用
- 2025前期咨詢服務合同協(xié)議書模板
- 確立企業(yè)核心競爭力的途徑試題及答案
- 2025電梯維護保養(yǎng)合同范本
- 第三單元《增強法治意識》測試卷-高二思想政治課《職業(yè)道德與法治》附答案
- 教育革新:2024版《認識交通標志》課件
- (高清版)DB4202∕T 39-2024 城市橋梁與隧道運行監(jiān)測技術規(guī)范
- 2024年社區(qū)警務工作規(guī)范考試題庫
- 2020-2024年各地中考語文試卷【標點符號使用題】匯集練附答案解析
- 數(shù)據分析師歷年考試真題試題庫(含答案)
- 住宅小區(qū)園林景觀綠化工程施工組織設計方案
- 物質的量說課
- 人教版八年級下冊歷史教案全冊
- 企業(yè)網絡設備資產清查合同
- 2024年北京普通高中學業(yè)水平等級性考試化學試題及答案
評論
0/150
提交評論