英才靜態(tài)電磁場求解概要 潘錦.ppt_第1頁
英才靜態(tài)電磁場求解概要 潘錦.ppt_第2頁
英才靜態(tài)電磁場求解概要 潘錦.ppt_第3頁
英才靜態(tài)電磁場求解概要 潘錦.ppt_第4頁
英才靜態(tài)電磁場求解概要 潘錦.ppt_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

潘錦 二 一二年四月十二日 靜態(tài)場問題求解方法概要 電磁場與波首席教授 電子科技大學(xué) 2013 07 2 2 出發(fā)點 Maxwell方程組 條件 本構(gòu)關(guān)系 邊界條件 直接針對場量計算的靜態(tài)電磁場分析方法 3 3 電位函數(shù)滿足Poisson方程 基于電位求解分析靜態(tài)電場問題的方法 電位的邊界條件 通過位函數(shù)間接計算靜態(tài)電磁場的分析方法 4 4 磁矢位的邊界條件 磁矢位函數(shù)滿足Poisson方程 基于磁矢位求解分析靜態(tài)磁場問題的方法 5 5 具有強對稱性的問題 無限大的均勻媒質(zhì)空間中的問題 已經(jīng)學(xué)習(xí)掌握的分析能力 待求場量或位函數(shù)具有單一坐標位置變量依賴的特征 源的分布 具有對稱性環(huán)境 具有對稱性 一維問題 包括高維問題 待求場量或位函數(shù)依賴于多個坐標位置變量 源的分布 不具有對稱性環(huán)境 具有對稱性 6 6 對于一般高維問題 多自變量 如何著手分析 求解邊值問題 邊值問題的描述邊值問題的解法 7 7 靜態(tài)場的邊值問題 邊值問題 在給定的邊界條件下 求解位函數(shù)的泊松方程或拉普拉斯方程 8 8 求解邊值問題 邊值問題的描述邊值問題的解法 9 9 邊值問題的類型 給定 第一類邊值問題 或狄里赫利問題 給定 給定 第三類邊值問題 或混合邊值問題 第二類邊值問題 或紐曼問題 V 求解域S V的包圍面 10 10 自然邊界條件 無界空間 要求 掌握用解邊值問題的思想求解任意復(fù)雜問題的數(shù)學(xué)描述方法 11 11 例 第一類邊值問題 第三類邊值問題 例 12 12 求解邊值問題 邊值問題的描述邊值問題的解法鏡象法分離變量法有限差分法 13 13 在求解域V內(nèi)保持待求量的方程不變 同時 在V的包圍邊界面S上保持給定的或的邊值不變 則泊松方程或拉普拉斯方程在場域V內(nèi)的解惟一 惟一性定理 惟一性定理的重要意義 給出了邊值問題具有惟一解的條件 為求解場問題的各種求解方法提供了理論依據(jù) 為求解結(jié)果的正確性提供了判據(jù) 惟一性定理的表述 V 求解域S V的包圍面 14 14 1 問題的提出 幾個實例接地導(dǎo)體板附近有一個點電荷 如圖所示 q q 非均勻感應(yīng)面電荷 等效電荷 鏡像法的基本原理 15 15 接地導(dǎo)體球附近有一個點電荷 如圖 接地導(dǎo)體柱附近有一個線電荷 情況與上例類似 但等效電荷為線電荷 q 非均勻感應(yīng)電荷 q 等效電荷 問題 這種等效電荷是否存在 這種等效是否合理 16 16 2 鏡像法的原理 方法 在求解域外設(shè)置等效電荷 集中代表邊界上分布電荷的作用 3 鏡像法的理論基礎(chǔ) 目的 使復(fù)雜邊值問題 化為無限大單一媒質(zhì)空間的問題 解的惟一性定理 17 17 像電荷的個數(shù) 位置及其電量大小 確定 三要素 4 鏡像法應(yīng)用的關(guān)鍵點 5 確定鏡像電荷的兩條原則 明確等效求解的 有效場域 鏡像電荷的確定 像電荷必須位于求解域以外 保持問題描述的方程不變 像電荷的個數(shù) 位置及電荷量的大小的選擇目標是保持問題的邊界條件不變 18 18 分析方法總結(jié) 已經(jīng)學(xué)到的方法和可以解決的問題無限大單一媒質(zhì)空間的問題 一維 二維 三維問題 場 源直接積分法積分方程方法 Maxwell方程的積分形式 微分方程方法 Maxwell方程的微分形式 Poisson方程 2 單一 非單一媒質(zhì)空間的問題 一維問題 Gauss定律 安培環(huán)路定律 積分方程簡化為代數(shù)方程 Poisson方程 偏微分方程簡化為常微分方程 3 非單一媒質(zhì)空間的高維問題鏡像法 19 由邊界條件知在邊界兩邊連續(xù) 解 設(shè)同軸線內(nèi)導(dǎo)體單位長度帶電量為 同軸線內(nèi)外導(dǎo)體半徑分別為a b 導(dǎo)體間部分填充介質(zhì) 介質(zhì)介電常數(shù)為 如圖所示 已知內(nèi)外導(dǎo)體間電壓為U 求 導(dǎo)體間單位長度內(nèi)的電場能量 例 典型例題 20 兩種方法求電場能量 或應(yīng)用導(dǎo)體系統(tǒng)能量求解公式 21 例無限長線電流位于z軸 介質(zhì)分界面為平面 求空間的分布和磁化電流分布 分析 電流呈軸對稱分布 可用安培環(huán)路定律求解 磁場方向沿方向 解 磁場方向與邊界面相切 由邊界條件知 在分界面兩邊 連續(xù)而不連續(xù) 由安培環(huán)路定律 介質(zhì)內(nèi)磁化強度為 22 磁介質(zhì)內(nèi) z 0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論