




已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
滾壓機設(shè)計 影響喂料系統(tǒng)的壓應(yīng)力 P. Guigon 楊麗麗 譯(有刪節(jié)) 摘要 在文章的第一部分,敘述了滾壓機的主要特點。 然后 ,講述了喂料和擠壓質(zhì)量之間的關(guān)系。 對于某個靜態(tài)差距 (無負(fù)載 ) ,滾壓機的處理量是由螺旋喂料速度決定的 ,與滾筒的速度快慢和需要壓實的生產(chǎn)材料無關(guān)。當(dāng)處理量是多種多樣的時候,控制差距是一個獲得相同質(zhì)量壓坯的好方法。對強烈環(huán)節(jié)緊湊的應(yīng)力分布的解釋和說明,這些應(yīng)力是分布在由一根周期旋轉(zhuǎn)的螺桿喂料的滾壓機上的。 關(guān)鍵詞 :輥壓; 喂 料 裝置; 壓坯異質(zhì); 差距控制 1 引言 由于 滾壓 機 簡單、低營運成本的 理念 , 而且 用材廣泛, 所以 被用在了許多不同的行業(yè) (化工、制藥、 食品加工、采礦、礦產(chǎn)、冶金 )上 。 廣泛 的垃圾回收或處理 就是一個 新興的應(yīng)用領(lǐng)域。滾壓機的擠壓要比第一眼看上去的復(fù)雜。 對很多參數(shù)和對滾壓機理的缺乏了解導(dǎo)致 了滾壓機沒有 產(chǎn)品的 優(yōu)越性 。 這篇文章將講述滾壓機的主要部分。 文中 將注意力集中在了解喂料裝置是如何影響壓實質(zhì)量的。 2. 滾壓機的概說 1-5 滾壓機的滾壓是一個連續(xù)的過程。 功能原理很簡單 :料粉是通過重力方式或者通過一根連接兩個方向相反正在旋轉(zhuǎn)的輥子的螺桿喂入。 由材料和滾 筒表面產(chǎn)生的摩擦在輥子之間的狹小空間里帶出料粉,在這些空隙里粉末產(chǎn)生的強大應(yīng)力導(dǎo)致了其結(jié)構(gòu)緊湊。 如果滾筒是平滑的或者是槽型的,物料被壓緊成致密片 而口袋卷筒將形成煤球型的 (如圖 1 所示 )。 1 圖 1:滾壓機中的壓塊和壓坯 2.1. 壓實機制 輥子之間的空間,一般分為三區(qū),在這三個區(qū)由不同的機制作用。喂料區(qū):在這個區(qū)顆粒的整理應(yīng)力很小而且致密性很純粹; 壓實區(qū):在這個區(qū)擠壓力作用明顯;擠壓區(qū):顆粒開始塑性變形和 /或被壓碎。在喂料區(qū)和壓實區(qū)之間的角度是鈍角或者是銳角。 圖 2:由壓電傳感器測量的應(yīng)力分布 2.2. 典型應(yīng)力 輥子間隙間的壓應(yīng)力的正常分布如圖 2 所示。在喂料區(qū)當(dāng)滾筒作用在粉末上的壓力很小時 (小于 0.1 兆帕 ), 它不能用壓電傳感器測量。 只有壓實區(qū)的應(yīng)力才可以用它測量。 應(yīng)力擴(kuò)增在小于直角的情況下發(fā)生。 應(yīng)力增加至最大值,這個最大值相當(dāng)于到達(dá)中性角度。 在許多情況下,角度的改變不和輥子間隙成比例,是因為材料覆蓋在滾筒的表面。 直角之后,壓坯被排出。 彈出物對應(yīng)的壓力急劇下降。 2 2.3.滾壓機所具有的優(yōu)缺點: 滾壓機滾壓物料有以下幾個優(yōu)點: (1)允許連續(xù)運行和有多功能的高生產(chǎn)能力 :適合重工業(yè)每小 時幾百噸的生產(chǎn) (礦產(chǎn)、肥料 等 )。 (2)壓實成本低。 帶動滾筒和螺桿運轉(zhuǎn)的能量是有限的。通常,干燥這一步是不需要的。 (3)需要壓實的熱材料的氣溫高達(dá) 1000攝示度是可能的。 然而,這項技術(shù)目前還有一些弊端: 壓坯的外形和尺寸 比沖模擠壓出來的不規(guī)則。料粉的泄漏 也 要重點解決 。未壓碎的料粉 也需要 再擠壓。使用真空除塵系統(tǒng)可以大大減少 (可降百分之幾 )細(xì)粉的泄漏2。 圖 3:滾壓機的結(jié)構(gòu) 2.4.技術(shù) 無論制造商是誰,滾壓機的原理都是一樣的 ,而且 滾壓機 都有相似的結(jié)構(gòu)配置。 市場上賣的滾壓機的輥子 有水平放置的,有垂直放置的,有傾斜放置的, (如圖 3 所示 )。兩種不同的結(jié)構(gòu)設(shè)計 要 根據(jù)滾壓機放置位置的合理性來選擇最優(yōu)的設(shè)計 方案 。 在懸臂軸設(shè)計中,棍子是被置于框體外面的(如圖 3所示)。 這種設(shè)計通常被用于小型機器;這樣的設(shè)計便于輥子的維修。 比較大型的機器用中間軸的設(shè)計結(jié)構(gòu),這就意味著,軸的兩端是由鉸鏈連接軸承旋轉(zhuǎn)的,而且輥子是位于框體里面的。制造商對 3 A、 B、 C三種結(jié)構(gòu)的優(yōu)點持有不同的意見。一般來說,一個輥子的軸承在機體里的作用是固定不變的,然而其他可移動的輥子的軸承是靠水壓力調(diào)節(jié)的 2.5.滾動和擠壓系統(tǒng) 輥子選擇的 方法 一般有兩種 :幾何特征 (光滑、槽、 和容器設(shè)計 )和表面硬度。 對于壓塊,容器造型的優(yōu)先使用,這是為了減少排除物的問題和擠壓造成的破壞:作用于壓坯上的最大允許壓力很大程度上取決于輥子的直徑。 越大的壓力被用于越大的機器上。 輥子的驅(qū)動組件必須 保證兩根軸間有一個恒定的轉(zhuǎn)距和一個相等的速度,這是為了阻止輥子 較早的 被 磨損壞和破壞壓坯的剪應(yīng)力的形成。為了防止壓塊,兩個輥子間的旋轉(zhuǎn)速度必須一樣。一般來說 ,液壓系統(tǒng)是用來維持滾動軸承座的 . 采用這種系統(tǒng),應(yīng)用力的調(diào)整范圍可以更廣泛。 2.6.喂料系統(tǒng)及隔離 喂料系統(tǒng)是一個好的擠壓過程的關(guān)鍵。它必須完成一個統(tǒng)一的連續(xù)的物料流動,這是為了恰當(dāng)而充 分 的填滿輥子間的量從而使壓坯形成不均勻質(zhì)。 該喂料系統(tǒng)還用于密封和除塵裝置。 兩種不同類型的喂料系統(tǒng)主要是依靠流動特性和粉末的密度來區(qū)分使用的。致密性需要制作壓坯 有 足夠的質(zhì)量保證:重力的自由向下喂料和強迫喂料 (粉末是被一個或幾個螺桿推向輥子的 )。 2.7.粉末的除塵 粉末中的空氣有兩種逃走的方法 :通過料粉的軸中心,來到喂料裝置處;通過輥子之間的空隙和面夾板。 一些空氣可以在棍子內(nèi)被壓縮, 這是一個限制生產(chǎn)量和壓實 質(zhì)量的關(guān)鍵因素 2。 在壓實區(qū)使用真空除塵可以有效的優(yōu)化輥壓質(zhì)量和減小未擠壓的粉末的泄漏。 3. 在實驗室滾壓機中喂料和壓實相互關(guān)系的闡述 3.1.實驗室滾壓機 實驗室進(jìn)行實驗的過程如圖示 4 所示。 滾壓機配備了垂直安裝的 130 毫米直徑50毫米寬的圓盤。滾壓機的詳細(xì)描述和須知將在 3-6給出。 4 圖 4:實驗室的滾壓機:( 1)輥子( 2)軸承座( 3)輥軸( 4)水平支撐系統(tǒng)( 5)螺旋喂料( 6)攪拌器( 7)喂料漏斗( 8)金屬夾( a)壓電變換器( b)移動變換器 3.2. 滾壓機的吞吐量 對于細(xì)粉而言,滾壓機的 進(jìn)料 量是由兩個因素限制的。一方面, 進(jìn)料 量是由細(xì)粉的除塵能力限制的。而另一方面,壓實速度又是由顆粒的彈性度限制的。一般來說,當(dāng)達(dá)到臨界流量時壓實的質(zhì)量比較差。在這種情況下,要么是由壓實引起的風(fēng)流影響了喂料(除塵能力差),要么是壓實的速度太快。這項研究的所有實驗都將在低于這個臨界流量時進(jìn)行。因此,當(dāng)出現(xiàn)細(xì)粉壓實沒有產(chǎn)生帶鋼或者帶鋼的質(zhì)量差的問題時,不是由除塵能力差或滾壓速度過高(擠壓時間短)引起的。 3.3.擠壓率好的擠壓場合 擠壓速度和螺桿轉(zhuǎn)速的范圍大可在實驗室滾壓機中得到解決。因此,我們研究了在擠壓帶鋼成形中滾 壓速度和螺桿速度對它的影響。為了清楚地發(fā)覺高低滾壓速度的限制對擠壓成形的影響我們使螺桿速度固定選擇它的擠壓速度。在滾壓速度低時將發(fā)過度擠壓,而在滾壓速度高時將不形成帶鋼。 三個操作條件規(guī)定如下: 當(dāng)喂料不足時,由螺旋喂料提供的大量粉末的操作滾壓率會太小。在這種情況下,不能擠壓微粒物質(zhì)。 當(dāng)喂料過多時,由螺旋喂料提供的大量粉末的操作滾壓率會太大。滾 子 與滾 子 之間 空隙的 增大 是很重要的。在 喂料過多的 情況下,擠壓出來的物質(zhì)質(zhì)量會差而且 未 擠壓的粉末的 流 失 也很 嚴(yán)重。 好的擠壓率是在處于喂料不足和喂料過多之間的擠壓率。當(dāng)擠 壓材料時產(chǎn)生的帶 5 鋼具有足夠的凝聚力和力學(xué)強度時,才會有好的擠壓率。 圖 5:不同輥子對應(yīng)不同旋轉(zhuǎn)速度的壓坯的輸出 圖 6:輥子的不同速度對應(yīng)不同的旋轉(zhuǎn)速度而且物料的輸出依靠旋轉(zhuǎn)速度而不是和輥速成正比 當(dāng)螺桿轉(zhuǎn)速固定時,滾壓吞吐量是由多種能夠形成好的擠壓的滾壓速度衡量的(如圖 5 所示)。對于固定的旋轉(zhuǎn)速度,滾壓機的吞吐量也是個常數(shù)。在圖 6 中,吞吐量是由多種滾壓速度下的旋轉(zhuǎn)速度決定的。這個吞吐量要比螺桿單獨作用時的吞吐量小。由滾動產(chǎn)生的壓力改變了粉末在螺桿內(nèi)的滑動狀態(tài)。 3.4. 軋輥輥縫的變化 如果上布的 軋輥能縱向移動,當(dāng)傳動力是恒定時軋輥的縫就能從初值增加到一個恒定值。恒定值是軋輥作用在壓實材料上的平均壓應(yīng)力的作用。它也是輥速度 vr的作用,軋輥的生產(chǎn)量是 QC,材料的壓實密度是 Qs,軋輥寬是 L,壓實材料的摩擦系數(shù) 6 是 f3: e=Qc LVr s(1- ) 輥縫測量有許多工作要點(輥速度和螺旋轉(zhuǎn)動速度),國際質(zhì)量曲已給出 (如 圖 7所示 )。 圖 7:輥子和螺桿的速度之間的標(biāo)準(zhǔn)間隙差距,初次間隙是 0.8mm 3.6. 應(yīng)力的波動與鐳的不同成分的關(guān)系如表 6 緊湊的密度分布的特點是通過衡量一個氯化鈉晶體的傳 遞分布 。 適當(dāng)?shù)膲毫δ苁孤然c晶體支離破碎 。 因此 , 同樣 的 氯化鈉晶體 不是到處都能傳遞光的 。 因為氯化鈉的透光性能是與局部緊湊地方的壓力有關(guān) 的 。 承受較少壓力的地方因此出現(xiàn)暗色 (如 圖 11 所示 )。 機械性能良好可以作為獲得緊湊性的特點 , 例如粉碎被使用過的氯化鈉 (硼粉 74 時 )。 施加在物料 上的壓力既不 符合 輥寬度也不符合時間常數(shù) 。 期刊的分布不均 。 周期現(xiàn)象就是螺旋反饋線的周期 。 事實上 , 施加在滾軸間隙上的壓力分布與 喂料 系統(tǒng) 壓力的分布 有關(guān)。 喂料 系統(tǒng)的 壓力 有 來自螺旋饋線 的 。 喂料壓力的不均勻是由于最后螺旋的螺桿的傳動力不均 勻 。 7 圖 11:氯化鈉的透光性(氯化鈉 d50, Am74),上圖 氯化鈉照片的標(biāo)準(zhǔn)灰色度,下圖 4. 結(jié)論 喂料和壓縮特性之間相互作用得到了證明 。 因為使用螺旋給料器,大的壓應(yīng)力產(chǎn)生了 , 并 被 當(dāng)作滾動和轉(zhuǎn)動的作用 力 。 壓力的 大小 僅由螺桿 給料器決定 ,和生產(chǎn) 材料 以及棍子的轉(zhuǎn)速都沒有關(guān)系 。 結(jié)果表明差距曲線可以近似 于 國際質(zhì)量曲線 。 因此 ,當(dāng)壓力的量不同時 , 控制差距是一個好方法 ,可以用這種方法來 獲得相同的壓應(yīng)力。對墻的觀測表明 , 顆粒運動喂料區(qū)不是連續(xù)的 。 螺桿自轉(zhuǎn) 的應(yīng)力 周期得到了證明 。 從單螺桿喂料的應(yīng)力分布 看, 如果 它們有相同周期 就可以 被觀察到。 8 Roll press design influence of force feed systems on compaction P. Guigon *, O. Simon1 Universite de Technologie de Compiegne, BP 20529, 60205 Compiegne cedex, France Abstract In the first part of the article, the main features of roll compactor design are reviewed. Then, the interaction between feeder and compact quality is demonstrated. For a given static gap (no load), the throughput of the press is only a function of the screw feeder speed no matter of the roller speed as long as compacted material is produced. Control of the gap is a good way to obtain compacts of the same quality when throughput is varied. The strong link of the stress distribution of the compact issued from a roll press fed by a single screw with the periodicity of the screw was demonstrated and explained. Keywords: Roll compactor; Feeding device; Heterogeneity of compact; Gap control 1. Introduction Because of their conceptual simplicity and low operating cost, roll compactors are used in many different industries (chemical, pharmaceutical, food processing, mining, minerals, and metallurgical) for a wide variety of materials. A new emerging application is the vast field of waste recycling or disposal. 9 Compaction in a roll press is more complicated than it looks at first sight. Many parameters are involved and a lack of understanding of compaction mechanisms results in products that do not possess the required characteristics. This article will review the main features of roll compactors. Then, attention will be focused on the understanding of how the feeding device influences the quality of compacts. 2. Generality about roll compaction Compaction in a roll press is a continuous process. Functional principle is simple: powder is fed by gravity or by means of a screw through two counter currently rotating rollers. Friction between the material and roller surface brings the powder towards the narrow space between the roll (gap), where the powder is submitted to high stresses leading to the formation of compact. If the rolls are smooth or fluted, material is compacted into dense sheets, whereas pocket rolls will form briquettes (Fig.1). 10 P. Guigon, O. Simon / Powder Technology 130 (2003) 41 48 42 Fig. 1. Briquetting and compaction in a roll press 2.1. Compaction mechanisms The space between the rolls is generally divided into three zones, where different mechanisms occur: the feeding zone, where the stresses are small and densification is solely due to rearrangement of particles; the compaction zone, where the pressing forces become effective and the particles deform plastically and/or break; and the extrusion zone. The limit between the feeding and the compaction zone is the gripping angle or nip angle 2.2. Stress profile A typical distribution of the normal stress versus the position in the gap between the rolls (roller angle) is represented in Fig. 2. 11 Fig. 2. Stress profile measured by the piezoelectric transducers. As the stress exerted by the rollers on the powder in the feeding area is very small (less than 0.1 MPa), it can not be measured by piezoelectric transducers. Only the stress exerted in the compaction area is observable. The stress augmentation takes place below the nip angle. The stress increases until a maximum which corresponds to the neutral angle. In many cases, the neutral angle does not coincide with the roll gap because the material slips along the roller surface. After the neutral angle, the compact is ejected. The ejection corresponds to a rapid decrease of the stress profile. 2.3. Advantages and drawbacks of roll compaction Agglomeration in roll presses has the following advantages: The process is continuous and allows with multiple units of high production capacities: several hundred tons perhour are suitable for heavy industry (mineral, fertilizers, ). The compaction costs are low. The energy consumption is limited to the power to drive the rolls and the screws. Normally, no drying 12 step is necessary. Compaction of hot materials with temperatures up to 1000 is possible. However, this technique presents some drawbacks: Aspect and dimension of compacts made by briquetting are less regular than those produced by die pressing. Powder leakage can be important. It is usually necessary to recycle the uncompacted powder. Use of vacuum desecration systems can greatly reduce (down to few percent) the leakage for very fine powder 2. 2.4. Technology Whatever manufacturer, the roll presses consist of the same elements and have similar configurations. Commercially available roller compactors have rolls mounted in a horizontal, vertical or even inclined position as shown in Fig. 3. Two different frame designs exist which are distinguished by the location of the press rollers with respect to the frame. 13 Fig. 3. Configuration of roll presses. In cantilever-shaft designs, the rollers are located outside the frame (Fig. 3). This design is normally used for smaller machines; it allows easy access to the rolls for maintenance tasks. Most larger machines use the mill-shaft frame design. This means, both ends of the two shafts are pivoted by bearings and the rolls are located within the frame. Manufacturers are not unanimous about the advantages of configurations A, B, and C. Generally, bearings of one of the rollers are fixed in relation to the frame,while the bearings of the other movable (floating) roller are maintained by an adjustable hydraulic force. 2.5. Rolls and pressurization system Roll choice is essential in two ways: geometrical characteristics 14 (smooth, fluted, and pocket design) and surface hardness. For briquetting, pocket shapes are optimized in order to diminish ejection problems and breakage of compacts: maximum applicable stress on the compact depends greatly on roll diameter. Higher stresses are used on larger machines. Roll drive assembly must ensure a constant torque and an equal velocity of the two roll shafts in order to prevent early wear of the rolls and shearing forces which will fracture the compact. In the case of briquetting, both rolls must rotate with exactly the same speed. Generally, a hydraulic system is used to maintain the bearing blocks of the movable roller. By using such a pressurizing system, the applied force can be adjusted within wide limits. 2.6. Feeding systems and confinement The feeding system is the key to a good compaction process. It must achieve a uniform and continuous flow of material in order to fill the nip between the rollers correctly and sufficiently, so that the formed compacts are not heterogeneous. The feeding systems are also used as densification and desertion devices. Two different types of feeding systems are used depending on the flow properties, the density of the powder, and the densification needed to produce compacts of sufficient quality: 15 ( 1) gravity feeder for free flowing particles and force feeder (powder is pushed towards the rolls by one or several screws). 2.7. Powder desecration The air fed with the powder can only escape by two paths: axially through the powder, counter currently to the feed; and through the gap between rolls and cheek plate. Some air can be compressed inside the compact. This is a key factor limiting compaction production throughput and compact quality 2. Use of vacuum desecration before the nip roll region is efficient in optimizing roller compaction and minimizing uncompacted powder leakage. 3. Demonstration of the interaction between feeding and compaction in a laboratory roll press 3.1. Laboratory roll press Experiments were carried out on a laboratory roll press (KomarekR B100QC) shown in Fig. 4. The roll press was equipped with 130-mm diameter and 50-mm wide smooth rolls, which were vertically arranged. Detail description of the roll press and instrumentation is given in Refs. 3 6. 16 Fig. 4. The laboratory roll press: (1) roll, (2) bearing block, (3) roll shaft, (4) supporting hydraulic system, (5) screw feeder, (6) paddle mixer, (7) feed hopper, (8) cheek plate. (a) Piezoelectric transducers, (b) displacement transducer. 3.2. Roll press throughput For fine powder, the roll press throughput is principally limited by two factors. On one hand, the throughput is limited by the powder deaeration ability, and on the other hand, the compaction speed is limited by the elasticity of the particles. Generally, a poor quality compaction takes place when a critical throughput is reached. In this case, either the airflow generated by compaction disturbs the feeding (bad deaeration) or the compaction is too fast 1. All experiments in this study were conducted below this critical throughput. Therefore, when no strip of compacted powder was produced or when the strip was of poor quality, the problem was not due to poor deaeration or to a too high roller speed (too short compaction time). 17 3.3. Compaction rate, good compaction settings A wide range of roller speeds and screw feeder speeds can be set on the laboratory roll press. Therefore, we investigated the influence of roller speed and screw speed on the formation of a compacted strip. The screw feeder speed was fixed and the roller speed was chosen in order to detect visually the higher and lower limits of roller speed that enabled the compaction. At low roller speeds, overcompaction occurred, and at high roller speeds, no strip was formed. Three operating conditions were defined as follows. The subfeeding, corresponding to the operating rate of the roll press when the amount of powder that is provided by the screw feeder is too small. In this case, the particulate material is not compacted. The over-feeding, which corresponds to the operating rate of the roll press when the amount of powder provided by the screw feeder is too large. The compact is extruded between the rolls and the roll gap increase is important. In this case, the compacted material is of poor quality and the powder loss as noncompacted powder is very important. The good compaction rate is an operating rate between sub- and overfeeding. It corresponds to the production of a strip 18 of compacted material that exhibits enough cohesion and mechanical strength. For a fixed screw speed, the roll press throughput was measured for several roller speeds Vr, enabling production of a good compact (Fig. 5). For a constant screw speed Vs, the roll press throughput is constant. In Fig. 6, the throughput is measured as a function of Vs for various Vr. This throughput is smaller than the throughput of the screw alone. The counter pressure created by the rollers modifies the slip between the powder and the screw barrel. Fig. 5. Compactor throughput versus roll speed for different screw speeds. 19 Fig. 6. Compactor throughput versus screw speed for different roll speeds and comparison with throughput delivered by the screw when not coupled with the roll. 3.4. Roll gap variation If the upper roll can move vertically, the roll gap increases from its initial value to an equilibrium value when the powder is compacted. This equilibrium value is a function of the mean stress applied by the rolls on the compacted material. It is also a function of the rollers speed Vr, the roll press throughput Qc, the density of the compacted material qs, the rolls width L, and the slip of the compacted material on the roll surface f 3: e=Qc LVr s(1- ) The roll gap was measured for many working points (sets of Vs and Vr), and iso-gap curves were computed (Fig. 7). 20 Fig. 7. Calculated iso-gap curves (mm) versus roll and screw speed. Initial gap is 0.8 mm. 3.6. Heterogeneity of compact in relation to the fluctuations of stress 6 Distribution of the compact density was characterized measuring the distribution of light transmitted through a sodium chloride compact. The fragmented sodium chloride crystals are oriented by the applied stress, and therefore, light is not diffused similarly in all directions. For sodium chloride, the light transmission property is linked with the stress that has been applied locally on the com
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025的裝修施工合同范本
- 《2025設(shè)備租賃合同的訂立程序內(nèi)容》
- 2025存量房買賣合同標(biāo)準(zhǔn)版
- 2025正式員工勞動合同范本
- 2025深圳個人租房合同范本簡化版
- 2025合作開發(fā)合同范本
- 2025年股權(quán)投資合作合同協(xié)議書樣本
- 2025年上海市房屋買賣居間合同樣本
- 2025雇傭合同范本模板
- 2025年購買合同范本
- 跨國公司與全球治理智慧樹知到期末考試答案章節(jié)答案2024年山東大學(xué)
- 山西省2024屆高三適應(yīng)性考試二(二模) 英語試卷(含答案)+聽力音頻+聽力材料
- 建筑史智慧樹知到期末考試答案2024年
- 美國特勤局工作總結(jié)
- 新版醫(yī)療機構(gòu)消毒技術(shù)規(guī)范
- 【波司登羽絨服公司員工招聘問題調(diào)研8500字】
- 制度梳理表(總表)
- 睪丸腫瘤課件
- 醫(yī)學(xué)倫理審查委員會的組成與職能
- 終端導(dǎo)購培訓(xùn)-高級導(dǎo)購銷售培訓(xùn)
- 空調(diào)冷卻冷凍水管道系統(tǒng)詳細(xì)的施工方案設(shè)計
評論
0/150
提交評論