已閱讀5頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
中文 1125字 譯文 : 光伏并網(wǎng)逆變器 最近,人們?cè)絹碓疥P(guān)注的替代能源,因?yàn)榛剂虾秃穗姀S的環(huán)境影響及其穩(wěn)定性(長(zhǎng)尾和原田, 1997 年 ; Myrzlk, 2001 年)。在各種替代能源中,太陽能發(fā)電尤為重視,除了因?yàn)樗且环N清潔的,無限的能源,此外相當(dāng)多的研究已經(jīng)在這一領(lǐng)域取得了突出的成績(jī)。太陽能發(fā)電系統(tǒng)由太陽電池組件,充電電池,和一個(gè)逆變器?,F(xiàn)在只有逆變電流模式進(jìn)入主流,原因是光伏逆變是正弦電流進(jìn)入電網(wǎng)。具體體現(xiàn)在單相并網(wǎng)光伏逆變器中,它具有普遍的拓?fù)浣Y(jié)構(gòu),這是標(biāo)準(zhǔn)的全橋電壓源逆變器(電平逆變器),它可以創(chuàng)建一個(gè)正弦電網(wǎng)電流( Kjaer et al., 2005; Kojabadi et al., 2006)。這種拓?fù)浣Y(jié)構(gòu)有兩個(gè)普遍的問題如下。 ( 1 )電池是 太陽能發(fā)電廠必不可少的儲(chǔ)存電能設(shè)備。但電池充電是一個(gè)短期和有污染的過程,并且有負(fù)面經(jīng)濟(jì)的效率。然而,逆變器可以不使用電池可以解決這些問題。在這個(gè)過程中,接口電路為逆變環(huán)節(jié)的直流電( DC )輸出的太陽能電池陣列的交流電源系統(tǒng)。如果輸出電壓的電流源逆變低于電力系統(tǒng)電壓和在發(fā)生短路負(fù)荷或逆變器故障,它沒有電流短路( Myrzlk, 2001年) 。 ( 2 )在一般的微處理器作為控制器,以實(shí)現(xiàn)良好的特點(diǎn)時(shí),太陽能發(fā)電系統(tǒng)與電流源逆變器的設(shè)計(jì)。是在控制器以較少的價(jià)值,有高質(zhì)量電感和電波的輸出電流的高開關(guān)頻率變頻器 所需要的,但是,受限制的是開關(guān)損耗和處理器的采樣頻率。 圖 .1 顯示的結(jié)構(gòu)電流源逆變器用作接口電路連接太陽能電池的實(shí)用線( Mohan et al, 1995年) 。它由五個(gè)開關(guān),一個(gè)電感器, LC 濾波器,輸出端口。逆變器工作在這兩個(gè)開關(guān)模式。質(zhì)量保證開關(guān)只執(zhí)行斬波行動(dòng),而第一季度,第四季度交換機(jī)確定方向的輸出電壓根據(jù)極性的電力系統(tǒng)。因此,與一般全橋 PWM逆變器執(zhí)行完整的一塊,該系統(tǒng)減少了開關(guān)損耗。 圖 .2顯示波形的傳統(tǒng)電流源逆變器。它代表了波形的輸出電壓和電流,該電流通過電感,輸入信號(hào),每個(gè)開關(guān)。 圖 .3顯示了脈沖轉(zhuǎn)變電流源逆變器電路,用于降低開關(guān)頻率和提高效率。當(dāng)太陽能電池模塊輸出電壓的是高于或低于輸出電壓的轉(zhuǎn)換器,則合成的電流源轉(zhuǎn)換,這需要 Buck - Boost變換器運(yùn)作良好。電路降壓頻率的逆變器是固定的,在60 HZ ,這是電力系統(tǒng)頻率。該過濾器( LS,CS)在輸出端口的逆變器是一種低成本的能力,以改善波形的輸出電流。如果過濾器的高容量的使用,功率因數(shù)的系統(tǒng)將不統(tǒng)一,因?yàn)橄辔谎舆t。 圖 .4顯示波形是電流源逆變器。指標(biāo)代表交換期間的升壓斬波器,這個(gè)數(shù)字。國(guó)際法協(xié)會(huì), ILF代表波形電感電流 各自的轉(zhuǎn)換和 IDC代表輸出電流的逆變器。作為一個(gè)脈沖波形,輸出波形的六脈沖移轉(zhuǎn)換代表 6 波形開關(guān)頻率 TS.We 采用了數(shù)字信號(hào)處理器( TMS320F2812 )產(chǎn)生的 PWM 6相移信號(hào)電流源逆變本文。由于采用非對(duì)稱 PWM模式,波形的輸出電流,這幾乎是逆變器的波形相似,六乘以開關(guān)頻率但不完全相同的。 圖 .5 顯示了各自的電感電流和輸出電流的常規(guī)逆變器和逆變器相等的開關(guān)頻率。 原文: Grid-connected photovoltaic system using current-source inverter Recently, there has been a growing interest in alternative energy sources because fossil fuel and atomic power plants affect the environment and its stability (Nagao andHarada,1997; Myrzlk, 2001). Among the various alternative source of energy, solar power stands apart as it is a clean and unlimited source of energy moreover, a considerable amount of research has been conducted recently in this field. A solar power systemconsists of a photovoltaic module,a charge battery, and an inverter. Only inverters operating in current-source mode are included in the classification,since one of the aims of the PV inverter is to inject a sinusoidal current into the grid. To embody the operation of a single-phase-grid-connected inverter for photovoltaic module,it has general topology that is a standard full-bridge voltage source inverter (VSI), which can create a sinusoidal grid current (Kjaer et al., 2005; Kojabadi et al., 2006). This topology has two general problem as below. (1) A battery is essential to store the electric energy generated by a solar power plant. But a charge battery has problems on its a short duration and pollution along with economic efficiency. However, transmitting the generated energy directly into the utility line without using a battery can solve these problems. In this process, an interface circuit called an inverter links the direct current (DC) output from the solar cell array to the AC power system. It does not matter if the output voltage of the current-source-inverter is lower than the power system voltage and in case of a shorted load or inverter malfunction, it does not have a surge current from a short-circuit (Myrzlk, 2001). (2) In general a microprocessor is used as the controller to achieve good characteristics when designing solar power systems with the current-source-inverters. In the controller, to reduce the value of the inductance and the ripple of the output current, a high switching frequency is required for the inverter, however, the frequency is restricted bythe switching loss and sampling frequency of a processor. Fig. 1 shows the structure of a current-source PWM inverter used as the interface circuit for linking solar cells to the utility line (Mohan et al., 1995). It consists of fiveswitches, one inductor, and an LC filter at the output port. This inverter operates in two switching modes. The QA switch only performs the chopping action, while the Q1Q4 switches determine the directions of the output voltage according to the polarity ofthe power system. Therefore, compared with general full-bridge PWMinverter that performs complete chopping, this system reduces the switching loss. Fig. 2 shows the waveforms of the conventional current-source PWM inverter. It represents the waveforms of the output voltage and current, the current through the inductor, and the input signals to each switch. Fig. 3 shows the proposed six-pulse-shift current-source PWM inverter circuit that is used to reduce the switching frequency and improve the efficiency. Whenever the output voltage of solar cell module is higher or lower than the output voltage of the converter in compositing the current-source converter, it is required that the buck-boost converter operate well. The proposed circuit has buck-frequency of the inverter is fixed at 60 Hz, which is the value of power system frequency. The filter (LS, CS) at the output port of the inverter is of a low capacity to improve the waveform of the output current. If a high capacity filter were to be used, the power factor of the system would not be unity because of the phase delay. Fig. 4 shows the waveforms of the proposed current source PWM inverter. TS represents the switching period of the buck-boost choppers in this figure. ILAILF represent the waveforms of the inductor currents of the respective converters and IDC represents the output current of the inverter. As a operational waveform, the output waveform of six-pulse-shift the converter represent six waveform in switching frequency TS.We used a DSP (TMS320F2812) to generate a PWM six-phase-shift signal for the current-source inverter in this paper. As a result of using the asymmetricPWM mode, the wa
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年鎂合金焊絲公司技術(shù)改造及擴(kuò)產(chǎn)項(xiàng)目可行性研究報(bào)告
- 2024-2030年觸摸屏搬遷改造項(xiàng)目可行性研究報(bào)告
- 2024年文藝演出團(tuán)隊(duì)委托合作協(xié)議3篇
- 加壓泵房課程設(shè)計(jì)
- 虛擬現(xiàn)實(shí)產(chǎn)品技術(shù)協(xié)議管理辦法
- 公園景觀彩繪施工合同
- 2024年標(biāo)準(zhǔn)校車長(zhǎng)期租賃合同模板下載版B版
- 互聯(lián)網(wǎng)農(nóng)業(yè)運(yùn)營(yíng)總監(jiān)聘用合同
- 醫(yī)療服務(wù)租賃合同模板
- 藝術(shù)家工作室轉(zhuǎn)讓合同模板
- 《孟母三遷》課本劇劇本:環(huán)境對(duì)成長(zhǎng)的重要性(6篇)
- 《富馬酸盧帕他定口崩片關(guān)鍵質(zhì)量屬性與標(biāo)準(zhǔn)研究》
- 走近非遺 課件 2024-2025學(xué)年湘美版(2024)初中美術(shù)七年級(jí)上冊(cè)
- 新生兒壞死性小腸結(jié)腸炎臨床診療指南解讀 課件
- 網(wǎng)絡(luò)數(shù)據(jù)安全管理?xiàng)l例
- 2024版2024年【人教版】二年級(jí)上冊(cè)《道德與法治》全冊(cè)教案
- 2024年浙江省單獨(dú)招生文化考試語文試卷(含答案詳解)
- 山東省泰安市2024屆高三上學(xué)期期末數(shù)學(xué)試題(含答案解析)
- 少兒編程獲獎(jiǎng)?wù)n件
- 2024年《風(fēng)力發(fā)電原理》基礎(chǔ)技能及理論知識(shí)考試題庫(kù)與答案
- 《高中體育與健康》考試復(fù)習(xí)題庫(kù)及答案
評(píng)論
0/150
提交評(píng)論