高三數(shù)學(xué)空間幾何體復(fù)習(xí)資料.doc_第1頁
高三數(shù)學(xué)空間幾何體復(fù)習(xí)資料.doc_第2頁
高三數(shù)學(xué)空間幾何體復(fù)習(xí)資料.doc_第3頁
高三數(shù)學(xué)空間幾何體復(fù)習(xí)資料.doc_第4頁
高三數(shù)學(xué)空間幾何體復(fù)習(xí)資料.doc_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

20092010學(xué)年度高三數(shù)學(xué)(人教版A版)第一輪復(fù)習(xí)資料 空間幾何體一【課標(biāo)要求】1利用實(shí)物模型、計(jì)算機(jī)軟件觀察大量空間圖形,認(rèn)識(shí)柱、錐、臺(tái)、球及其簡單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡單物體的結(jié)構(gòu);2能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識(shí)別上述的三視圖所表示的立體模型,會(huì)使用材料(如:紙板)制作模型,會(huì)用斜二側(cè)法畫出它們的直觀圖;3通過觀察用兩種方法(平行投影與中心投影)畫出的視圖與直觀圖,了解空間圖形的不同表示形式;4完成實(shí)習(xí)作業(yè),如畫出某些建筑的視圖與直觀圖(在不影響圖形特征的基礎(chǔ)上,尺寸、線條等不作嚴(yán)格要求);二【命題走向】近幾年來,立體幾何高考命題形式比較穩(wěn)定,題目難易適中,解答題常常立足于棱柱、棱錐和正方體位置關(guān)系的證明和夾角距離的求解,而選擇題、填空題又經(jīng)常研究空間幾何體的幾何特征和體積表面積。因此復(fù)習(xí)時(shí)我們要首先掌握好空間幾何體的空間結(jié)構(gòu)特征。培養(yǎng)好空間想能力。預(yù)測2010年高考對該講的直接考察力度可能不大,但經(jīng)常出一些創(chuàng)新型題目,具體預(yù)測如下:(1)題目多出一些選擇、填空題,經(jīng)常出一些考察空間想象能力的試題;解答題的考察位置關(guān)系、夾角距離的載體使空間幾何體,我們要想像的出其中的點(diǎn)線面間的位置關(guān)系;(2)研究立體幾何問題時(shí)要重視多面體的應(yīng)用,才能發(fā)現(xiàn)隱含條件,利用隱蔽條件解題。三【要點(diǎn)精講】1柱、錐、臺(tái)、球的結(jié)構(gòu)特征(1)柱棱柱:一般的,有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱;棱柱中兩個(gè)互相平行的面叫做棱柱的底面,簡稱為底;其余各面叫做棱柱的側(cè)面;相鄰側(cè)面的公共邊叫做棱柱的側(cè)棱;側(cè)面與底面的公共頂點(diǎn)叫做棱柱的頂點(diǎn)。底面是三角形、四邊形、五邊形的棱柱分別叫做三棱柱、四棱柱、五棱柱圓柱:以矩形的一邊所在的直線為旋轉(zhuǎn)軸,其余邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫做圓柱;旋轉(zhuǎn)軸叫做圓柱的軸;垂直于軸的邊旋轉(zhuǎn)而成的曲面叫做圓柱的側(cè)面;無論旋轉(zhuǎn)到什么位置,不垂直于軸的邊都叫做圓柱側(cè)面的母線棱柱與圓柱統(tǒng)稱為柱體;(2)錐棱錐:一般的有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體叫做棱錐;這個(gè)多邊形面叫做棱錐的底面或底;有公共頂點(diǎn)的各個(gè)三角形面叫做棱錐的側(cè)面;各側(cè)面的公共頂點(diǎn)叫做棱錐的頂點(diǎn);相鄰側(cè)面的公共邊叫做棱錐的側(cè)棱。底面是三角錐、四邊錐、五邊錐的棱柱分別叫做三棱錐、四棱錐、五棱錐圓錐:以直角三角形的一條直角邊所在的直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫做圓錐;旋轉(zhuǎn)軸為圓錐的軸;垂直于軸的邊旋轉(zhuǎn)形成的面叫做圓錐的底面;斜邊旋轉(zhuǎn)形成的曲面叫做圓錐的側(cè)面。棱錐與圓錐統(tǒng)稱為錐體(3)臺(tái)棱臺(tái):用一個(gè)平行于底面的平面去截棱錐,底面和截面之間的部分叫做棱臺(tái);原棱錐的底面和截面分別叫做棱臺(tái)的下底面和上底面;棱臺(tái)也有側(cè)面、側(cè)棱、頂點(diǎn)。圓臺(tái):用一個(gè)平行于底面的平面去截圓錐,底面和截面之間的部分叫做圓臺(tái);原圓錐的底面和截面分別叫做圓臺(tái)的下底面和上底面;圓臺(tái)也有側(cè)面、母線、軸圓臺(tái)和棱臺(tái)統(tǒng)稱為臺(tái)體。(4)球以半圓的直徑所在的直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體叫做球體,簡稱為球;半圓的圓心叫做球的球心,半圓的半徑叫做球的半徑,半圓的直徑叫做球的直徑。(5)組合體由柱、錐、臺(tái)、球等幾何體組成的復(fù)雜的幾何體叫組合體。2空間幾何體的三視圖三視圖是觀測者從不同位置觀察同一個(gè)幾何體,畫出的空間幾何體的圖形。他具體包括:(1)正視圖:物體前后方向投影所得到的投影圖;它能反映物體的高度和長度;(2)側(cè)視圖:物體左右方向投影所得到的投影圖;它能反映物體的高度和寬度;(3)俯視圖:物體上下方向投影所得到的投影圖;它能反映物體的長度和寬度;3空間幾何體的直觀圖(1)斜二測畫法建立直角坐標(biāo)系,在已知水平放置的平面圖形中取互相垂直的OX,OY,建立直角坐標(biāo)系;畫出斜坐標(biāo)系,在畫直觀圖的紙上(平面上)畫出對應(yīng)的OX,OY,使=450(或1350),它們確定的平面表示水平平面;畫對應(yīng)圖形,在已知圖形平行于X軸的線段,在直觀圖中畫成平行于X軸,且長度保持不變;在已知圖形平行于Y軸的線段,在直觀圖中畫成平行于Y軸,且長度變?yōu)樵瓉淼囊话?;擦去輔助線,圖畫好后,要擦去X軸、Y軸及為畫圖添加的輔助線(虛線)。(2)平行投影與中心投影平行投影的投影線是互相平行的,中心投影的投影線相交于一點(diǎn)四【典例解析】題型1:空間幾何體的構(gòu)造例19,如圖,已知三棱錐的底面是直角三角形,直角邊長分別為3和4,過直角頂點(diǎn)的側(cè)棱長為4,且垂直于底面,該三棱錐的主視圖是( )答案 B2. (2009湖南卷理)正方體ABCD的棱上到異面直線AB,C的距離相等的點(diǎn)的個(gè)數(shù)為(C)A2 B3 C. 4 D. 5 【答案】:C【解析】解析如圖示,則BC中點(diǎn),點(diǎn),點(diǎn),點(diǎn)分別到兩異面直線的距離相等。即滿足條件的點(diǎn)有四個(gè),故選C項(xiàng)(3)正方體ABCD_A1B1C1D1的棱長為2,點(diǎn)M是BC的中點(diǎn),點(diǎn)P是平面ABCD內(nèi)的一個(gè)動(dòng)點(diǎn),且滿足PM=2,P到直線A1D1的距離為,則點(diǎn)P的軌跡是 A.圓 B.雙曲線 C.兩個(gè)點(diǎn) D.直線解析: 點(diǎn)P到A1D1的距離為,則點(diǎn)P到AD的距離為1,滿足此條件的P的軌跡是到直線AD的距離為1的兩條平行直線,又,滿足此條件的P的軌跡是以M為圓心,半徑為2的圓,這兩種軌跡只有兩個(gè)交點(diǎn).故點(diǎn)P的軌跡是兩個(gè)點(diǎn)。選項(xiàng)為C。點(diǎn)評(píng):該題考察空間內(nèi)平面軌跡的形成過程,考察了空間想象能力。例2(07江蘇9)兩相同的正四棱錐組成如圖1所示的幾何體,可放棱長為1的正方體內(nèi),使正四棱錐的底面ABCD與正方體的某一個(gè)平面平行,且各頂點(diǎn)均在正方體的面上,則這樣的幾何體體積的可能值有( )A1個(gè)B2個(gè) C3個(gè)D無窮多個(gè)解析:由于兩個(gè)正四棱錐相同,所以所求幾何體的中心在正四棱錐底面正方形ABCD中心,有對稱性知正四棱錐的高為正方體棱長的一半,影響幾何體體積的只能是正四棱錐底面正方形ABCD的面積,問題轉(zhuǎn)化為邊長為1的正方形的內(nèi)接正方形有多少種,所以選D。點(diǎn)評(píng):本題主要考查空間想象能力,以及正四棱錐的體積。正方體是大家熟悉的幾何體,它的一些內(nèi)接或外接圖形需要一定的空間想象能力,要學(xué)會(huì)將空間問題向平面問題轉(zhuǎn)化。題型2:空間幾何體的定義例3(2009四川卷理)如圖,在半徑為3的面上有三點(diǎn),球心到平面的距離是,則兩點(diǎn)的球面距離是A. B. C. D. 【考點(diǎn)定位】本小題考查球的截面圓性質(zhì)、球面距,基礎(chǔ)題。(同文9)解析:由知截面圓的半徑,故,所以兩點(diǎn)的球面距離為,故選擇B。解析2:過球心作平面的垂線交平面與,則在直線上,由于,所以,由為等腰直角三角形可得,所以為等邊三角形,則兩點(diǎn)的球面距離是。例42009浙江卷文)設(shè)是兩個(gè)不同的平面,是一條直線,以下命題正確的是( )A若,則 B若,則 C若,則 D若,則 【命題意圖】此題主要考查立體幾何的線面、面面的位置關(guān)系,通過對平行和垂直的考查,充分調(diào)動(dòng)了立體幾何中的基本元素關(guān)系【解析】對于A、B、D均可能出現(xiàn),而對于C是正確的. 點(diǎn)評(píng):對于空間幾何體的定義要有深刻的認(rèn)識(shí),掌握它們并能判斷它們的性質(zhì)。題型3:空間幾何體中的想象能力例5(2009北京卷理)(本小題共14分) 如圖,在三棱錐中,底面,點(diǎn),分別在棱上,且()求證:平面;()當(dāng)為的中點(diǎn)時(shí),求與平面所成的角的大小;()是否存在點(diǎn)使得二面角為直二面角?并說明理由.【解法1】本題主要考查直線和平面垂直、直線與平面所成的角、二面角等基礎(chǔ)知識(shí),考查空間想象能力、運(yùn)算能力和推理論證能力()PA底面ABC,PABC.又,ACBC.BC平面PAC.()D為PB的中點(diǎn),DE/BC,又由()知,BC平面PAC,DE平面PAC,垂足為點(diǎn)E.DAE是AD與平面PAC所成的角,PA底面ABC,PAAB,又PA=AB,ABP為等腰直角三角形,在RtABC中,.在RtADE中,與平面所成的角的大小.()AE/BC,又由()知,BC平面PAC,DE平面PAC,又AE平面PAC,PE平面PAC,DEAE,DEPE,AEP為二面角的平面角,PA底面ABC,PAAC,.在棱PC上存在一點(diǎn)E,使得AEPC,這時(shí),故存在點(diǎn)E使得二面角是直二面角.【解法2】如圖,以A為原煤點(diǎn)建立空間直角坐標(biāo)系, 設(shè),由已知可得 . (),BCAP.又,BCAC,BC平面PAC.()D為PB的中點(diǎn),DE/BC,E為PC的中點(diǎn),又由()知,BC平面PAC,DE平面PAC,垂足為點(diǎn)E.DAE是AD與平面PAC所成的角,.與平面所成的角的大小.()同解法1.例6(2009全國卷文)(本小題滿分12分). 如圖,直三棱柱ABC-A1B1C1中,ABAC,D、E分別為AA1、B1C的中點(diǎn),DE平面BCC1()證明:AB=AC ()設(shè)二面角A-BD-C為60,求B1C與平面BCD所成的角的大小解析:本題考查線面垂直證明線面夾角的求法,第一問可取BC中點(diǎn)F,通過證明AF平面BCC1,再證AF為BC的垂直平分線,第二問先作出線面夾角,即證四邊形AFED是正方形可證平面DEF平面BDC,從而找到線面夾角求解。此題兩問也可建立空間直角坐標(biāo)系利用向量法求解。解法一:()取BC中點(diǎn)F,連接EF,則EF,從而EFDA。ACBA1B1C1DE連接AF,則ADEF為平行四邊形,從而AF/DE。又DE平面,故AF平面,從而AFBC,即AF為BC的垂直平分線,所以AB=AC。()作AGBD,垂足為G,連接CG。由三垂線定理知CGBD,故AGC為二面角A-BD-C的平面角。由題設(shè)知,AGC=600. 設(shè)AC=2,則AG=。又AB=2,BC=,故AF=。由得2AD=,解得AD=。故AD=AF。又ADAF,所以四邊形ADEF為正方形。因?yàn)锽CAF,BCAD,AFAD=A,故BC平面DEF,因此平面BCD平面DEF。連接AE、DF,設(shè)AEDF=H,則EHDF,EH平面BCD。連接CH,則ECH為與平面BCD所成的角。. 因ADEF為正方形,AD=,故EH=1,又EC=2,所以ECH=300,即與平面BCD所成的角為300.解法二:()以A為坐標(biāo)原點(diǎn),射線AB為x軸的正半軸,建立如圖所示的直角坐標(biāo)系A(chǔ)xyz。設(shè)B(1,0,0),C(0,b,0),D(0,0,c),則(1,0,2c),E(,c).于是=(,0),=(-1,b,0).由DE平面知DEBC, =0,求得b=1,所以 AB=AC。()設(shè)平面BCD的法向量則又=(-1,1, 0),=(-1,0,c),故 令x=1, 則y=1, z=,=(1,1, ).又平面的法向量=(0,1,0)由二面角為60知,=60,故 ,求得 于是 , , 所以與平面所成的角為30題型4:斜二測畫法例7畫正五棱柱的直觀圖,使底面邊長為3cm側(cè)棱長為5cm。解析:先作底面正五邊形的直觀圖,再沿平行于Z軸方向平移即可得作法:(1)畫軸:畫X,Y,Z軸,使XOY=45(或135),XOZ=90。(2)畫底面:按X軸,Y軸畫正五邊形的直觀圖ABCDE。(3)畫側(cè)棱:過A、B、C、D、E各點(diǎn)分別作Z軸的平行線,并在這些平行線上分別截取AA,BB,CC,DD,EE。(4)成圖:順次連結(jié)A,B,C,D,F(xiàn),加以整理,去掉輔助線,改被遮擋的部分為虛線點(diǎn)評(píng):用此方法可以依次畫出棱錐、棱柱、棱臺(tái)等多面體的直觀圖。例8是正ABC的斜二測畫法的水平放置圖形的直觀圖,若的面積為,那么ABC的面積為_。解析:。點(diǎn)評(píng):該題屬于斜二測畫法的應(yīng)用,解題的關(guān)鍵在于建立實(shí)物圖元素與直觀圖元素之間的對應(yīng)關(guān)系。特別底和高的對應(yīng)關(guān)系。題型5:平行投影與中心投影例9(1)如圖,在正四面體ABCD中,E、F、G分別是三角形ADC、ABD、BCD的中心,則EFG在該正四面體各個(gè)面上的射影所有可能的序號(hào)是( ) A B C D(2)(2009寧夏海南卷理)(本小題滿分12分)如圖,四棱錐S-ABCD 的底面是正方形,每條側(cè)棱的長都是地面邊長的倍,P為側(cè)棱SD上的點(diǎn)。 ()求證:ACSD; ()若SD平面PAC,求二面角P-AC-D的大小()在()的條件下,側(cè)棱SC上是否存在一點(diǎn)E, 使得BE平面PAC。若存在,求SE:EC的值;若不存在,試說明理由。解法一: ()連BD,設(shè)AC交BD于O,由題意。在正方形ABCD中,所以,得. ()設(shè)正方形邊長,則。又,所以, 連,由()知,所以, 且,所以是二面角的平面角。由,知,所以,即二面角的大小為。 ()在棱SC上存在一點(diǎn)E,使由()可得,故可在上取一點(diǎn),使,過作的平行線與的交點(diǎn)即為。連BN。在中知,又由于,故平面,得,由于,故.解法二: ();連,設(shè)交于于,由題意知.以O(shè)為坐標(biāo)原點(diǎn),分別為軸、軸、軸正方向,建立坐標(biāo)系如圖 設(shè)底面邊長為,則高。 于是 故 從而 ()由題設(shè)知,平面的一個(gè)法向量,平面的一個(gè)法向量,設(shè)所求二面角為,則,所求二面角的大小為 ()在棱上存在一點(diǎn)使. 由()知是平面的一個(gè)法向量, 且 設(shè) 則 而 即當(dāng)時(shí), 而不在平面內(nèi),故例10多面體上,位于同一條棱兩端的頂點(diǎn)稱為相鄰的,如圖,正方體的一個(gè)頂點(diǎn)A在平面內(nèi),其余頂點(diǎn)在的同側(cè),正方體上與頂點(diǎn)A相鄰的三個(gè)頂點(diǎn)到的距離分別為1,2和4,P是正方體的其余四個(gè)頂點(diǎn)中的一個(gè),則P到平面的距離可能是: 3; 4; 5; 6; 7以上結(jié)論正確的為_(寫出所有正確結(jié)論的編號(hào))ABCDA1B1C1D1A1解析:如圖,B、D、A1到平面的距離分別為1、2、4,則D、A1的中點(diǎn)到平面的距離為3,所以D1到平面的距離為6;B、A1的中點(diǎn)到平面的距離為,所以B1到平面的距離為5;則D、B的中點(diǎn)到平面的距離為,所以C到平面的距離為3;C、A1的中點(diǎn)到平面的距離為,所以C1到平面的距離為7;而P為C、C1、B1、D1中的一點(diǎn),所以選。點(diǎn)評(píng):該題將計(jì)算蘊(yùn)涵于射影知識(shí)中,屬于難得的綜合題目題型6:三視圖例11(1)畫出下列幾何體的三視圖(2)解析:這二個(gè)幾何體的三視圖如下(2)如圖,設(shè)所給的方向?yàn)槲矬w的正前方,試畫出它的三視圖(單位:cm)點(diǎn)評(píng):畫三視圖之前,應(yīng)把幾何體的結(jié)構(gòu)弄清楚,選擇一個(gè)合適的主視方向。一般先畫主視圖,其次畫俯視圖,最后畫左視圖。畫的時(shí)候把輪廓線要畫出來,被遮住的輪廓線要畫成虛線。物體上每一組成部分的三視圖都應(yīng)符合三條投射規(guī)律。例12某物體的三視圖如下,試判斷該幾何體的形狀解析:該幾何體為一個(gè)正四棱錐分析:三視圖是從三個(gè)不同的方向看同一物體得到的三個(gè)視圖。點(diǎn)評(píng):主視圖反映物體的主要形狀特征,主要體現(xiàn)物體的長和高,不反映物體的寬。而俯視圖和主視圖共同反映物體的長要相等。左視圖和 俯視圖共同反映物體的寬要相等。據(jù)此就不難得出該幾何體的形狀五【思維總結(jié)】1.幾種常凸多面體間的關(guān)系2.一些特殊棱柱、棱錐、棱臺(tái)的概念和主要性質(zhì)名稱棱柱直棱柱正棱柱圖 形定 義有兩個(gè)面互相平行,而其余每相鄰兩個(gè)面的交線都互相平行的多面體側(cè)棱垂直于底面的棱柱底面是正多邊形的直棱柱側(cè)棱平行且相等平行且相等平行且相等側(cè)面的形狀平行四邊形矩形全等的矩形對角面的形狀平行四邊形矩形矩形平行于底面的截面的形狀與底面全等的多邊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論