




免費(fèi)預(yù)覽已結(jié)束,剩余17頁(yè)可下載查看
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2015年福建省南平市高 考數(shù)學(xué)模擬試卷(理科)一、選擇題:每小題5分,共50分1已知x,yr,i為虛數(shù)單位,且yix=1+i,則(1i)x+y的值為() a 2 b 2i c 4 d 2i2已知直線x+y=1與圓x2+y2=1 相交a,b兩點(diǎn),則|ab|=() a b c d 3等比數(shù)列an的各項(xiàng)均為正數(shù),且a5a6+a4a7=8,則log2a1+log2a2+log2a10=() a 10 b 8 c 6 d 44當(dāng)為銳角時(shí),“cosxdx=”是“=”的() a 充分不必要條件 b 必要不充分條件 c 充要條件 d 既不充分也不必要條件5已知向量=(3,4)=(6,3),=(2m,m+1)若,則實(shí)數(shù)m的值為() a b c 3 d 36如圖給出了一個(gè)程序框圖,其作用是輸入x的值,輸出相應(yīng)的y值若要使輸入的x值與輸出的y值相等,則這樣的x值有() a 1個(gè) b 2個(gè) c 3個(gè) d 4個(gè)7如圖是一個(gè)空間幾何體的三視圖,則該幾何體的表面積是() a 16+ b 4 c 24+ d 248已知o為坐標(biāo)原點(diǎn),點(diǎn)a的坐標(biāo)是(2,3),點(diǎn)p(x,y)在不等式組所確定的平面區(qū)域內(nèi)(包括邊界)運(yùn)動(dòng),則的取值范圍是() a 4,10 b 6,9 c 6,10 d 9,109已知p是拋物線y2=4x上的一個(gè)動(dòng)點(diǎn),則p到直線l1:4x3y+6=0和l2:x+2=0的距離之和的最小值是() a 1 b 2 c 3 d 410已知a,br,函數(shù)f(x)=有兩個(gè)極值點(diǎn)x1,x2(x1x2),f(x2)=x1,則方程f2(x)af(x)b=0的實(shí)根個(gè)數(shù)() a 4 b 3 c 2 d 0二、填空題:每小題4分,共20分11為估計(jì)圖中陰影部分的面積,現(xiàn)采用隨機(jī)模擬的方法,從邊長(zhǎng)為1的正方形abcd中產(chǎn)生200個(gè)點(diǎn),經(jīng)統(tǒng)計(jì),其中落入陰影部分的點(diǎn)共有134個(gè),則估計(jì)陰影部分的面積是12已知sin()coscos()sin=,是第三象限角,則tan(+)=13在(1+x+x2)(1x)10的展開(kāi)式中,含x4的系數(shù)為 14已知x,y(0,+),3x2=()y,則+的最小值為15若實(shí)數(shù)a,b,c成等差數(shù)列,點(diǎn)p(1,0)在動(dòng)直線ax+by+c=0上的射影為點(diǎn)m,已知點(diǎn)n(3,3),則線段mn的最大值與最小值的和為三、解答題16已知函數(shù)f(x)=2sinxcosxcos2x,xr(1)求函數(shù)f(x)的單調(diào)增區(qū)間(2)在abc中,角a、b、c所對(duì)邊的長(zhǎng)分別是a,b,c,若f(a)=2,c=,c=2,求abc的面積17已知甲盒內(nèi)有大小相同的1個(gè)紅球和3個(gè)黑球,乙盒內(nèi)有大小相同的2個(gè)紅球和3個(gè)黑球,現(xiàn)從甲、乙兩盒內(nèi)各任取2個(gè)球()求取出的4個(gè)球均為黑球的概率;()求取出的4個(gè)球中恰有1個(gè)紅球的概率;()設(shè)為取出的4個(gè)球中紅球的個(gè)數(shù),求的分布列和數(shù)學(xué)期望18如圖,在四面體pabc中,pa面acb,bcac,m是pa的中點(diǎn),e是bm的中點(diǎn),ac=2,pa=4,f是線段pc上的點(diǎn),且ef面acb()求證:bcaf()求;()若異面直線ef與ca所成角為45,求ef與面pab所成角的正弦值19已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率e=,點(diǎn)p(,1)在橢圓上()求橢圓的方程;()過(guò)的右焦點(diǎn)f作兩條垂直的弦ab,cd,設(shè)ab,cd的中點(diǎn)分別為m,n,證明:直線mn必過(guò)定點(diǎn),并求此定點(diǎn)20已知函數(shù)f(x)=abex(e是自然對(duì)數(shù)的底數(shù),e=2.71828)的圖象在x=0處的切線方程為y=x() 求a,b的值;() 若g(x)=mlnxex+mx2(m+1)x+1(m0),求函數(shù)h(x)=g(x)f(x)的單調(diào)區(qū)間;() 若正項(xiàng)數(shù)列an滿足a1=,=f(an)=f(an)證明:數(shù)列an是遞減數(shù)列選考題。本題有(1)、(2)、(3)三個(gè)選答題,每小題14分,請(qǐng)考生任選2個(gè)小題作答,滿分14分,如果多選,則按所做的前兩題記分,作答時(shí),先用2b鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中。選修4-2:矩陣與變換21已知矩陣m=,若向量在矩陣m的變換下得到向量() 求矩陣m;() 設(shè)矩陣,求直線xy+1=0在矩陣nm的對(duì)應(yīng)變換作用下得到的曲線c的方程選修4-4:坐標(biāo)系與參數(shù)方程22在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線c1:=,曲線c2:,(為參數(shù))() 求曲線c1的直角坐標(biāo)方程與曲線c2的普通方程;() 求曲線c2上的點(diǎn)到曲線c1的點(diǎn)的最小距離選修4-5:不等式選講23已知函數(shù)f(x)=|12x|2+2x|() 解不等式f(x)1;() 若a2+2af(x)恒成立,求實(shí)數(shù)a的取值范圍2015年福建省南平市高考數(shù)學(xué)模擬試卷(理科)參考答案與試題解析一、選擇題:每小題5分,共50分1已知x,yr,i為虛數(shù)單位,且yix=1+i,則(1i)x+y的值為() a 2 b 2i c 4 d 2i考點(diǎn): 復(fù)數(shù)相等的充要條件專(zhuān)題: 數(shù)系的擴(kuò)充和復(fù)數(shù)分析: 利用復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)相等即可得出解答: 解:yix=1+i,解得x=1,y=1則(1i)x+y=(1i)2=2i故選:b點(diǎn)評(píng): 本題考查了復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)相等,考查了計(jì)算能力,屬于基礎(chǔ)題2已知直線x+y=1與圓x2+y2=1 相交a,b兩點(diǎn),則|ab|=() a b c d 考點(diǎn): 直線與圓的位置關(guān)系專(zhuān)題: 直線與圓分析: 利用圓心到直線的距離與半徑半弦長(zhǎng)的關(guān)系求解即可解答: 解:直線x+y=1與圓x2+y2=1 圓心到直線的距離為:=,圓的半徑為1,所以直線x+y=1與圓x2+y2=1 相交a,b兩點(diǎn),則|ab|=故選:b點(diǎn)評(píng): 本題考查直線與圓的位置關(guān)系的應(yīng)用,注意圓的半徑、弦心距、半弦長(zhǎng)的關(guān)系是解題的關(guān)鍵3等比數(shù)列an的各項(xiàng)均為正數(shù),且a5a6+a4a7=8,則log2a1+log2a2+log2a10=() a 10 b 8 c 6 d 4考點(diǎn): 數(shù)列的求和專(zhuān)題: 等差數(shù)列與等比數(shù)列分析: 由等比數(shù)列得性質(zhì)和已知可得a1a10=a2a9=a5a6=4,由對(duì)數(shù)的運(yùn)算整體代入可求解答: 解:由等比數(shù)列得性質(zhì)可得a1a10=a2a9=a5a6,又a5a6+a4a7=8,a1a10=a2a9=a5a6=4,log2a1+log2a2+log2a10=log2(a1a2a10)=log2(a1a10)5=log245=log2210=10,故選:a點(diǎn)評(píng): 本題考查等比數(shù)列的性質(zhì),涉及對(duì)數(shù)的運(yùn)算,屬中檔題4當(dāng)為銳角時(shí),“cosxdx=”是“=”的() a 充分不必要條件 b 必要不充分條件 c 充要條件 d 既不充分也不必要條件考點(diǎn): 必要條件、充分條件與充要條件的判斷專(zhuān)題: 簡(jiǎn)易邏輯分析: 利用定積分求出關(guān)系式,然后利用充要條件判斷即可解答: 解:當(dāng)為銳角時(shí),“cosxdx=”可得sin,可得=sin=,滿足所以當(dāng)為銳角時(shí),“cosxdx=”是“=”的充要條件故選:c點(diǎn)評(píng): 本題考查定積分的求法,充要條件的判斷與應(yīng)用,基本知識(shí)的考查5已知向量=(3,4)=(6,3),=(2m,m+1)若,則實(shí)數(shù)m的值為() a b c 3 d 3考點(diǎn): 平面向量的坐標(biāo)運(yùn)算專(zhuān)題: 平面向量及應(yīng)用分析: 利用已知條件求出,然后利用這里共線的充要條件求解即可解答: 解:向量=(3,4)=(6,3),=(3,1)=(2m,m+1),若,可得3m+3=2m,解得m=3故選:d點(diǎn)評(píng): 本題考查向量的基本運(yùn)算,基本知識(shí)的考查6如圖給出了一個(gè)程序框圖,其作用是輸入x的值,輸出相應(yīng)的y值若要使輸入的x值與輸出的y值相等,則這樣的x值有() a 1個(gè) b 2個(gè) c 3個(gè) d 4個(gè)考點(diǎn): 選擇結(jié)構(gòu)專(zhuān)題: 閱讀型;分類(lèi)討論分析: 由已知的程序框圖,我們可得該程序的功能是計(jì)算并輸出分段函數(shù)y=的值,結(jié)合輸入的x值與輸出的y值相等,我們分類(lèi)討論后,即可得到結(jié)論解答: 解:由題意得該程序的功能是計(jì)算并輸出分段函數(shù)y=的值又輸入的x值與輸出的y值相等當(dāng)x2時(shí),x=x2,解得x=0,或x=1當(dāng)2x5時(shí),x=2x4,解得x=4當(dāng)x5時(shí),x=,解得x=1(舍去)故滿足條件的x值共有3個(gè)故選c點(diǎn)評(píng): 本題考查的知識(shí)點(diǎn)是選擇結(jié)構(gòu),其中分析出函數(shù)的功能,將問(wèn)題轉(zhuǎn)化為分段函數(shù)函數(shù)值問(wèn)題,是解答本題的關(guān)鍵7如圖是一個(gè)空間幾何體的三視圖,則該幾何體的表面積是() a 16+ b 4 c 24+ d 24考點(diǎn): 由三視圖求面積、體積專(zhuān)題: 空間位置關(guān)系與距離分析: 根據(jù)三視圖給出的數(shù)據(jù)可判斷:底面邊長(zhǎng)為2的正方形,高位1的四棱柱,棱柱內(nèi)有一個(gè)半球,球半徑為1,根據(jù)幾何體的性質(zhì),轉(zhuǎn)化為正方形,矩形,圓的面積求解解答: 解:根據(jù)三視圖給出的數(shù)據(jù)可判斷:底面邊長(zhǎng)為2的正方形,高位1的四棱柱,棱柱內(nèi)有一個(gè)半球,球半徑為1,所以該幾何體的表面積22+421+(412)=16+故選:a點(diǎn)評(píng): 本題考查了空間幾何體,組合體的三視圖的運(yùn)用,關(guān)鍵是判斷組合體的構(gòu)成,運(yùn)用數(shù)據(jù)求解面積,難度不大,需要計(jì)算準(zhǔn)確8已知o為坐標(biāo)原點(diǎn),點(diǎn)a的坐標(biāo)是(2,3),點(diǎn)p(x,y)在不等式組所確定的平面區(qū)域內(nèi)(包括邊界)運(yùn)動(dòng),則的取值范圍是() a 4,10 b 6,9 c 6,10 d 9,10考點(diǎn): 簡(jiǎn)單線性規(guī)劃專(zhuān)題: 不等式的解法及應(yīng)用分析: 設(shè)z=,則z=2x+3y,作出不等式組對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí)進(jìn)行求解即可解答: 解:設(shè)z=,則z=2x+3y,作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:由z=2x+3y得y=x+z,平移直線y=x+z,由圖象可知當(dāng)直線y=x+z經(jīng)過(guò)點(diǎn)c(3,0)時(shí),直線y=x+z的截距最小,此時(shí)z最小,此時(shí)zmin=23=6,直線y=x+z經(jīng)過(guò)點(diǎn)b時(shí),直線y=x+z的截距最小,此時(shí)z最小,由,解得,即b(2,2),此時(shí)zmax=22+32=10,故6z10故選:c點(diǎn)評(píng): 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)向量的數(shù)量積,以及數(shù)形結(jié)合是解決本題的關(guān)鍵9已知p是拋物線y2=4x上的一個(gè)動(dòng)點(diǎn),則p到直線l1:4x3y+6=0和l2:x+2=0的距離之和的最小值是() a 1 b 2 c 3 d 4考點(diǎn): 拋物線的簡(jiǎn)單性質(zhì)專(zhuān)題: 計(jì)算題;圓錐曲線的定義、性質(zhì)與方程分析: x=1是拋物線y2=4x的準(zhǔn)線,則p到x+2=0的距離等于pf+1,拋物線y2=4x的焦點(diǎn)f(1,0)過(guò)p作4x3y+6=0垂線,和拋物線的交點(diǎn)就是p,所以點(diǎn)p到直線l1:4x3y+6=0的距離和到直線l2:x=1的距離之和的最小值就是f(1,0)到直線4x3y+6=0距離,即可得出結(jié)論解答: 解:x=1是拋物線y2=4x的準(zhǔn)線,p到x+2=0的距離等于|pf|+1,拋物線y2=4x的焦點(diǎn)f(1,0)過(guò)p作4x3y+6=0垂線,和拋物線的交點(diǎn)就是p,點(diǎn)p到直線l1:4x3y+6=0的距離和到直線l2:x=1的距離之和的最小值就是f(1,0)到直線4x3y+6=0距離,p到直線l1:4x3y+6=0和l2:x+2=0的距離之和的最小值是+1=2+1=3故選:c點(diǎn)評(píng): 本題考查點(diǎn)到直線的距離公式的求法,是基礎(chǔ)題解題時(shí)要認(rèn)真審題,注意拋物線的性質(zhì)的靈活運(yùn)用10已知a,br,函數(shù)f(x)=有兩個(gè)極值點(diǎn)x1,x2(x1x2),f(x2)=x1,則方程f2(x)af(x)b=0的實(shí)根個(gè)數(shù)() a 4 b 3 c 2 d 0考點(diǎn): 利用導(dǎo)數(shù)研究函數(shù)的極值專(zhuān)題: 綜合題;導(dǎo)數(shù)的綜合應(yīng)用分析: 由函數(shù)f(x)=有兩個(gè)極值點(diǎn)x1,x2,可得x2axb=0有兩個(gè)不相等的根,必有=a2+4b0而方程f2(x)af(x)b=0的1=0,可知此方程有兩解且f(x)=x1或x2再分別討論利用平移變換即可解出方程f(x)=x1或f(x)=x2解的個(gè)數(shù)解答: 解:f(x)=,f(x)=x2+ax+b,由題意知x1,x2是函數(shù)的兩個(gè)極值點(diǎn),x2axb=0有兩個(gè)不相等的根,=a2+4b0x1x2,x1=,x2=而方程f2(x)af(x)b=0的1=0,此方程有兩解且f(x)=x1或x2即有0x1x2,f(x2)0把y=f(x)向下平移x2個(gè)單位即可得到y(tǒng)=f(x)x2的圖象,f(x2)=x2,可知方程f(x)=x2有兩解把y=f(x)向下平移x1個(gè)單位即可得到y(tǒng)=f(x)x1的圖象,f(x2)=x2,f(x2)x10,可知方程f(x)=x1只有一解綜上可知:方程f(x)=x1或f(x)=x2只有3個(gè)實(shí)數(shù)解即關(guān)于x的方程f2(x)af(x)b=0的只有3不同實(shí)根故選:b點(diǎn)評(píng): 本題綜合考查了利用導(dǎo)數(shù)研究函數(shù)得單調(diào)性、極值及方程解得個(gè)數(shù)、平移變換等基礎(chǔ)知識(shí),考查了圖象平移的思想方法、推理能力、計(jì)算能力、分析問(wèn)題和解決問(wèn)題的能力二、填空題:每小題4分,共20分11為估計(jì)圖中陰影部分的面積,現(xiàn)采用隨機(jī)模擬的方法,從邊長(zhǎng)為1的正方形abcd中產(chǎn)生200個(gè)點(diǎn),經(jīng)統(tǒng)計(jì),其中落入陰影部分的點(diǎn)共有134個(gè),則估計(jì)陰影部分的面積是0.67考點(diǎn): 幾何概型專(zhuān)題: 概率與統(tǒng)計(jì)分析: 由已知,點(diǎn)落入陰影部分的概率為,由此得到陰影部分與正方形的面積比為,由此求導(dǎo)陰影部分面積解答: 解:由題意,根據(jù)幾何概型的公式可得點(diǎn)落入陰影部分的概率為,所以陰影部分與正方形的面積比為,即,正方形面積為1,所以陰影部分的面積為0.67;故答案為:0.67點(diǎn)評(píng): 本題考查了幾何概型的公式運(yùn)用;明確陰影部分的面積與正方形的面積比對(duì)于落入陰影部分的點(diǎn)數(shù)與所有點(diǎn)數(shù)比是關(guān)鍵12已知sin()coscos()sin=,是第三象限角,則tan(+)=7考點(diǎn): 兩角和與差的余弦函數(shù)專(zhuān)題: 三角函數(shù)的求值分析: 利用兩角和差的正弦公式進(jìn)行化簡(jiǎn),然后利用兩角和差的正切公式進(jìn)行計(jì)算即可解答: 解:由sin()coscos()sin=,得sin()=sin()=,sin=,是第三象限角,cos=,tan=,則tan(+)=7,故答案為:7;點(diǎn)評(píng): 本題主要考查三角函數(shù)值的計(jì)算,利用兩角和差的正弦公式和正切公式是解決本題的關(guān)鍵13在(1+x+x2)(1x)10的展開(kāi)式中,含x4的系數(shù)為 135考點(diǎn): 二項(xiàng)式定理的應(yīng)用專(zhuān)題: 計(jì)算題分析: 先將多項(xiàng)式展開(kāi),轉(zhuǎn)化為二項(xiàng)式系數(shù)的和差,利用二項(xiàng)展開(kāi)式的通項(xiàng)公式求出各項(xiàng)系數(shù)即可解答: 解:(1+x+x2)(1x)10=(1x)10+x(1x)10+x2(1x)10(1+x+x2)(1x)10展開(kāi)式中含x4的系數(shù)為(1x)10的含x4的系數(shù)加上其含x3的系數(shù)加上其含x2項(xiàng)的系數(shù)(1x)10展開(kāi)式的通項(xiàng)為tr+1=c10r(x)r令r=4,3,2分別得展開(kāi)式含x4,x3,x2項(xiàng)的系數(shù)為c104,c103,c102故(1+x+x2)(1x)10展開(kāi)式中含x4的系數(shù)為c104c103+c102=135,故答案為135點(diǎn)評(píng): 本題考查等價(jià)轉(zhuǎn)化能力及利用二項(xiàng)展開(kāi)式的通項(xiàng)公式解決二項(xiàng)展開(kāi)式的特定項(xiàng)問(wèn)題14已知x,y(0,+),3x2=()y,則+的最小值為考點(diǎn): 基本不等式專(zhuān)題: 不等式的解法及應(yīng)用分析: 利用指數(shù)函數(shù)性質(zhì)可得x+y=2,再利用“乘1法”與基本不等式的性質(zhì)即可得出解答: 解:x,y(0,+),3x2=()y,3x2=3y,x2=y,即x+y=2則+=當(dāng)且僅當(dāng)y=x=2,故答案為:點(diǎn)評(píng): 本題考查了指數(shù)函數(shù)性質(zhì)、“乘1法”與基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題15若實(shí)數(shù)a,b,c成等差數(shù)列,點(diǎn)p(1,0)在動(dòng)直線ax+by+c=0上的射影為點(diǎn)m,已知點(diǎn)n(3,3),則線段mn的最大值與最小值的和為10考點(diǎn): 點(diǎn)到直線的距離公式專(zhuān)題: 直線與圓分析: 由a,b,c成等差數(shù)列,利用等差數(shù)列的性質(zhì)得到2b=a+c,整理后與直線方程ax+by+c=0比較發(fā)現(xiàn),直線ax+by+c=0恒過(guò)q(1,2),再由點(diǎn)p(1,0)在動(dòng)直線ax+by+c=0上的射影為m,得到pm與qm垂直,利用圓周角定理得到m在以pq為直徑的圓上,由p和q的坐標(biāo),利用中點(diǎn)坐標(biāo)公式求出圓心a的坐標(biāo),利用兩點(diǎn)間的距離公式求出此圓的半徑r,線段mn長(zhǎng)度的最大值即為m與圓心a的距離與半徑的和,求出即可解答: 解:a,b,c成等差數(shù)列,2b=a+c,即a2b+c=0,可得方程ax+by+c=0恒過(guò)q(1,2),又點(diǎn)p(1,0)在動(dòng)直線ax+by+c=0上的射影為m,pmq=90,m在以pq為直徑的圓上,此圓的圓心a坐標(biāo)為(,),即a(0,1),半徑r=|pq|=,又n(3,3),|an|=5,則|mn|max=5+,最小值為5,所以線段mn的最大值與最小值的和為10故答案為:10點(diǎn)評(píng): 此題考查了等差數(shù)列的性質(zhì),恒過(guò)定點(diǎn)的直線方程,圓周角定理,線段中點(diǎn)坐標(biāo)公式,以及兩點(diǎn)間的距離公式,利用等差數(shù)列的性質(zhì)得到2b=a+c,即a2b+c=0是解本題的突破點(diǎn)三、解答題16已知函數(shù)f(x)=2sinxcosxcos2x,xr(1)求函數(shù)f(x)的單調(diào)增區(qū)間(2)在abc中,角a、b、c所對(duì)邊的長(zhǎng)分別是a,b,c,若f(a)=2,c=,c=2,求abc的面積考點(diǎn): 三角函數(shù)中的恒等變換應(yīng)用;正弦定理專(zhuān)題: 計(jì)算題;三角函數(shù)的圖像與性質(zhì)分析: ()由二倍角公式及輔助角公式對(duì)已知函數(shù)進(jìn)行化簡(jiǎn)可得f(x)=2sin(2x),然后結(jié)合正弦函數(shù)的單調(diào)性即可求解f(x)的單調(diào)遞增區(qū)間(ii)由已知代入可求a,然后依據(jù)正弦定理,可求a,b,代入三角形的面積公式可求解答: 解:()f(x)=2sinxcosxcos2x,xr)= (1分)f(x)=2sin(2x)(3分)由,kz,解得,kz(5分)函數(shù)f(x)的單調(diào)遞增區(qū)間是k,kz(6分)()在abc中,f(a)=2,c=,c=2,2sin(2a)=2解得a=k,kz(8分)又0a,(9分)依據(jù)正弦定理,有,解得a=(10分)b=ac=(11分)=(13分)點(diǎn)評(píng): 本通綜合考查了二倍角公式、輔助角公式在三角函數(shù)化簡(jiǎn)中的應(yīng)用,正弦函數(shù)性質(zhì)的應(yīng)用及正弦定理、三角形面積公式的應(yīng)用17已知甲盒內(nèi)有大小相同的1個(gè)紅球和3個(gè)黑球,乙盒內(nèi)有大小相同的2個(gè)紅球和3個(gè)黑球,現(xiàn)從甲、乙兩盒內(nèi)各任取2個(gè)球()求取出的4個(gè)球均為黑球的概率;()求取出的4個(gè)球中恰有1個(gè)紅球的概率;()設(shè)為取出的4個(gè)球中紅球的個(gè)數(shù),求的分布列和數(shù)學(xué)期望考點(diǎn): 離散型隨機(jī)變量的期望與方差;古典概型及其概率計(jì)算公式;離散型隨機(jī)變量及其分布列專(zhuān)題: 概率與統(tǒng)計(jì)分析: ()設(shè)“從甲盒內(nèi)取出的2個(gè)球均為黑球”為事件a,“從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件b且ab獨(dú)立,由獨(dú)立事件的概率公式可得;()設(shè)“從甲盒內(nèi)取出的2個(gè)球均為黑球;從乙盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球”為事件c,“從甲盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球;從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件d由互斥事件的概率公式可得答案()為取出的4個(gè)球中紅球的個(gè)數(shù),則可能的取值為0,1,2,3結(jié)合前兩問(wèn)的解法得到結(jié)果,寫(xiě)出分布列和期望解答: 解:(i)設(shè)“從甲盒內(nèi)取出的2個(gè)球均為黑球”為事件a,“從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件b事件a,b相互獨(dú)立,且,取出的4個(gè)球均為黑球的概率為p(ab)=p(a)p(b)=(ii)設(shè)“從甲盒內(nèi)取出的2個(gè)球均為黑球;從乙盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球”為事件c,“從甲盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球;從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件d事件c,d互斥,且,取出的4個(gè)球中恰有1個(gè)紅球的概率為p(c+d)=p(c)+p(d)=(iii)可能的取值為0,1,2,3由(i),(ii)得p(=0)=,p(=1)=,又p(=2)=,p(=3)=的分布列為: 0 1 2 3p 的數(shù)學(xué)期望e=0+1+2+3=點(diǎn)評(píng): 本小題主要考查互斥事件、相互獨(dú)立事件、離散型隨機(jī)變量的分布列和數(shù)學(xué)期望等基礎(chǔ)知識(shí),考查運(yùn)用概率知識(shí)解決實(shí)際問(wèn)題的能力18如圖,在四面體pabc中,pa面acb,bcac,m是pa的中點(diǎn),e是bm的中點(diǎn),ac=2,pa=4,f是線段pc上的點(diǎn),且ef面acb()求證:bcaf()求;()若異面直線ef與ca所成角為45,求ef與面pab所成角的正弦值考點(diǎn): 異面直線及其所成的角;直線與平面平行的性質(zhì)專(zhuān)題: 空間位置關(guān)系與距離;空間角;空間向量及應(yīng)用分析: ()pa面acb,從而得到bcpa,再由bcac及線面垂直判定定理即可得出bcaf;()首先根據(jù)已知條件,以a為原點(diǎn),ac的垂線為x軸,ac為y軸建立空間直角坐標(biāo)系,求出一些點(diǎn)的坐標(biāo),可設(shè),b(m,2,0),可表示出f點(diǎn)的坐標(biāo),而為平面acb的一個(gè)法向量,由ef面acb,即可得到,這樣即可求出;()寫(xiě)出向量的坐標(biāo),根據(jù)異面直線ef與ca所成角為45即可求出m,從而求出b點(diǎn)坐標(biāo),過(guò)c作cdab,則可說(shuō)明為平面pab的法向量,并設(shè),根據(jù)即可求出,從而由sin=|cos|即可求得ef與面pab所成角的正弦值解答: 解:()證明:pa面acb,bc面acb;pabc,即bcpa;又bcac,paac=a;bc面pac,af面pac;bcaf;()如圖以a為原點(diǎn),ac的垂線,ac,ap三直線分別為x,y,z軸,建立空間直角坐標(biāo)系,則:a(0,0,0),c(0,2,0),p(0,0,4),m(0,0,2);設(shè),(01),b(m,2,0),(m0),可得,f(0,22,4),則;因?yàn)槭瞧矫鎍cb的一個(gè)法向量,ef面acb;()由()知;=;解得m=1;由此,b(1,2,0);過(guò)c作cdab,垂足為d;又pa面acb,cd面acb;cdpa,paab=a;cd面pab;為面pab的法向量,設(shè),則:,取y=1,則;ef與面pab所成角的正弦值:sin=|cos|=點(diǎn)評(píng): 考查線面垂直的性質(zhì),線面垂直的判定定理,建立空間直角坐標(biāo)系,利用空間向量解決線面平行、線線角,以及線面角等問(wèn)題的方法,能確定空間點(diǎn)的坐標(biāo),向量夾角余弦的坐標(biāo)公式,弄清直線和平面所成角與直線方向向量和平面法向量夾角的關(guān)系19已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率e=,點(diǎn)p(,1)在橢圓上()求橢圓的方程;()過(guò)的右焦點(diǎn)f作兩條垂直的弦ab,cd,設(shè)ab,cd的中點(diǎn)分別為m,n,證明:直線mn必過(guò)定點(diǎn),并求此定點(diǎn)考點(diǎn): 橢圓的簡(jiǎn)單性質(zhì)專(zhuān)題: 圓錐曲線的定義、性質(zhì)與方程分析: 解:()設(shè)出所求橢圓方程為由橢圓的離心率及點(diǎn)p在橢圓上列式求得a,b的值,則橢圓方程可求;()求出橢圓右焦點(diǎn)f的坐標(biāo),然后分弦ab,cd的斜率均存在和弦ab或cd的斜率不存在兩種情況求解當(dāng)斜率均存在時(shí),寫(xiě)出直線ab的方程,代入橢圓方程后化簡(jiǎn),利用根與系數(shù)關(guān)系求得m坐標(biāo),同理求得n的坐標(biāo)進(jìn)一步分k1和k=1求得直線mn的方程,從而說(shuō)明直線mn過(guò)定點(diǎn),當(dāng)弦ab或cd的斜率不存在時(shí),易知,直線mn為x軸,也過(guò)點(diǎn)()解答: 解:()由題意可設(shè)所求橢圓方程為則,解得:a2=3,b2=2即橢圓的方程為;()由題意得f(1,0),(1)當(dāng)弦ab,cd的斜率均存在時(shí),設(shè)ab的斜率為k,則cd的斜率為令a(x1,y1),b(x2,y2),線段ab中點(diǎn)m(x0,y0)將直線ab方程代入橢圓方程,并化簡(jiǎn)得(3k2+2)x26k2x+(3k26)=0則,于是m()cdab,將點(diǎn)m坐標(biāo)中的k換為,即得點(diǎn)當(dāng)k1時(shí),直線mn的方程為令y=0,得x=,則直線mn過(guò)定點(diǎn)();當(dāng)k=1時(shí),易得直線mn的方程x=,也過(guò)點(diǎn)()(2)當(dāng)弦ab或cd的斜率不存在時(shí),易知,直線mn為x軸,也過(guò)點(diǎn)()綜上,直線mn必過(guò)定點(diǎn)()點(diǎn)評(píng): 本題考查了橢圓方程的求法,考查了直線和圓錐曲線的位置關(guān)系,涉及直線和圓錐曲線問(wèn)題,常采用聯(lián)立直線方程和圓錐曲線方程,利用根與系數(shù)關(guān)系求解,是中檔題20已知函數(shù)f(x)=abex(e是自然對(duì)數(shù)的底數(shù),e=2.71828)的圖象在x=0處的切線方程為y=x() 求a,b的值;() 若g(x)=mlnxex+mx2(m+1)x+1(m0),求函數(shù)h(x)=g(x)f(x)的單調(diào)區(qū)間;() 若正項(xiàng)數(shù)列an滿足a1=,=f(an)=f(an)證明:數(shù)列an是遞減數(shù)列考點(diǎn): 利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;數(shù)列與函數(shù)的綜合專(zhuān)題: 導(dǎo)數(shù)的綜合應(yīng)用分析: ()先求出函數(shù)的導(dǎo)數(shù),得到ab=0,b=1,從而求出a,b的值;()先求出h(x)的表達(dá)式,求出h(x)的導(dǎo)數(shù),通過(guò)討論m的范圍,確定函數(shù)的單調(diào)性即可;()要證數(shù)列an是遞減數(shù)列,只需設(shè)出u(x)=exx1,x(0,+),通過(guò)求導(dǎo)得到u(x)u(0)=0,即exx+1,從而證出結(jié)論解答: 解:()由題意得f(0)=0,f(0)=1,則ab=0,b=1,解得:a=1,b=1,()由題意得h(x)=mlnx+mx2(m+1)x,x(0,+)h(x)=+x(m+1)=,(1)當(dāng)0m1時(shí),令h(x)0,并注意到函數(shù)的定義域(0,+),得0xm或x1,則h(x)的增區(qū)間是(0,m),(1,+),同理可求h(x)的減區(qū)間是(m.1);(2)當(dāng)m=1時(shí),h(x)0,則h(x)是定義域(0,+)內(nèi)的增函數(shù);(3)當(dāng)m1時(shí),令h(x)0,并注意到函數(shù)的定義域(0,+),得0x1或xm,則h(x)的增區(qū)間是(0,1),(m,+),同理可求h(x)的減區(qū)間是(1,m);()證明:因?yàn)檎?xiàng)數(shù)列an滿足a1=,an=f(an),所以ln(an)=ln(1),即an+1=ln,要證數(shù)列an是遞減數(shù)列:an+1anlnanan+1,設(shè)u(x)=exx1,x(0,+),u(x)=ex10,u(x)是(0,+)上的增函數(shù),則u(x)u(0)=0,即exx+1,故:an+1,則數(shù)列an是遞減數(shù)列點(diǎn)評(píng): 本題考察了函數(shù)的單調(diào)性,考察導(dǎo)數(shù)的應(yīng)用,考察轉(zhuǎn)化思想,不等式的證明問(wèn)題,本題是一道難題選考題。本題有(1)、(2)、(3)三個(gè)選答題,每小題14分,請(qǐng)考生任選2個(gè)小題作答,滿分14分,如果多選,則按所做的前兩題記分,作答時(shí),先用2b鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中。選修4-2:矩陣與變換21已知矩陣m=,若向量在矩陣m的變換下得到向量() 求矩陣m;() 設(shè)矩陣,求直線xy+1=0在矩陣nm的對(duì)應(yīng)變換作用下得到的曲線c的方程考點(diǎn): 幾種特
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 居間貸款服務(wù)合同
- 個(gè)人獨(dú)家銷(xiāo)售代理合同
- 行政管理經(jīng)濟(jì)法分析解題技巧試題及答案
- 行政管理經(jīng)濟(jì)法考試假設(shè)案例試題及答案
- 中學(xué)教育法律法規(guī)解讀
- 經(jīng)濟(jì)學(xué)在企業(yè)管理中的應(yīng)用試題及答案
- 親子活動(dòng)在社區(qū)中的推廣計(jì)劃
- 醫(yī)療事故的急診處理機(jī)制計(jì)劃
- 工程管理市場(chǎng)分析試題及答案
- 職業(yè)院校電工考試試題及答案
- GB/T 23999-2009室內(nèi)裝飾裝修用水性木器涂料
- 國(guó)標(biāo)美標(biāo)德標(biāo)日表法蘭尺寸標(biāo)準(zhǔn)
- 測(cè)繪生產(chǎn)困難類(lèi)別細(xì)則及工日定額
- 國(guó)民經(jīng)濟(jì)行業(yè)分類(lèi)2022年
- 獸醫(yī)藥理學(xué) 第15章 特效解毒藥
- 空乘人員職業(yè)形象設(shè)計(jì)與化妝(169張課件)
- 會(huì)計(jì)工作年限證明個(gè)人承諾書(shū)
- 物業(yè)公共秩序管理課件
- 淺談摩托艇的安全管理
- 女性功能治療方案ppt課件
- 公路工程計(jì)量與計(jì)價(jià)考試B本科
評(píng)論
0/150
提交評(píng)論