



免費(fèi)預(yù)覽已結(jié)束,剩余1頁(yè)可下載查看
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
初三數(shù)學(xué)各章節(jié)重要知識(shí)點(diǎn)概要班級(jí): 姓名: 第21章 二次根式1二次根式:一般地,式子叫做二次根式.注意:(1)若這個(gè)條件不成立,則 不是二次根式;(2)是一個(gè)重要的非負(fù)數(shù),即; 0.2重要公式:(1),(2) ;3積的算術(shù)平方根:積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積;4二次根式的乘法法則: .5二次根式比較大小的方法:(1)利用近似值比大小;(2)把二次根式的系數(shù)移入二次根號(hào)內(nèi),然后比大??;(3)分別平方,然后比大小.6商的算術(shù)平方根:,商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根.7二次根式的除法法則:(1);(2);(3)分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎?8最簡(jiǎn)二次根式:(1)滿(mǎn)足下列兩個(gè)條件的二次根式,叫做最簡(jiǎn)二次根式, 被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式, 被開(kāi)方數(shù)中不含能開(kāi)的盡的因數(shù)或因式;(2)最簡(jiǎn)二次根式中,被開(kāi)方數(shù)不能含有小數(shù)、分?jǐn)?shù),字母因式次數(shù)低于2,且不含分母;(3)化簡(jiǎn)二次根式時(shí),往往需要把被開(kāi)方數(shù)先分解因數(shù)或分解因式;(4)二次根式計(jì)算的最后結(jié)果必須化為最簡(jiǎn)二次根式.10同類(lèi)二次根式:幾個(gè)二次根式化成最簡(jiǎn)二次根式后,如果被開(kāi)方數(shù)相同,這幾個(gè)二次根式叫做同類(lèi)二次根式.12二次根式的混合運(yùn)算:(1)二次根式的混合運(yùn)算包括加、減、乘、除、乘方、開(kāi)方六種代數(shù)運(yùn)算,以前學(xué)過(guò)的,在有理數(shù)范圍內(nèi)的一切公式和運(yùn)算律在二次根式的混合運(yùn)算中都適用;(2)二次根式的運(yùn)算一般要先把二次根式進(jìn)行適當(dāng)化簡(jiǎn),例如:化為同類(lèi)二次根式才能合并;除法運(yùn)算有時(shí)轉(zhuǎn)化為分母有理化或約分更為簡(jiǎn)便;使用乘法公式等.第22章 一元二次方程1. 一元二次方程的一般形式: a0時(shí),ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關(guān)問(wèn)題時(shí),多數(shù)習(xí)題要先化為一般形式,目的是確定一般形式中的a、 b、 c; 其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式.2. 一元二次方程的解法: 一元二次方程的四種解法要求靈活運(yùn)用, 其中直接開(kāi)平方法雖然簡(jiǎn)單,但是適用范圍較??;公式法雖然適用范圍大,但計(jì)算較繁,易發(fā)生計(jì)算錯(cuò)誤;因式分解法適用范圍較大,且計(jì)算簡(jiǎn)便,是首選方法;配方法使用較少.3. 一元二次方程根的判別式: 當(dāng)ax2+bx+c=0 (a0)時(shí),=b2-4ac 叫一元二次方程根的判別式.請(qǐng)注意以下等價(jià)命題:0 有兩個(gè)不等的實(shí)根; =0 有兩個(gè)相等的實(shí)根;0 無(wú)實(shí)根; 4平均增長(zhǎng)率問(wèn)題-應(yīng)用題的類(lèi)型題之一 (設(shè)增長(zhǎng)率為x): (1) 第一年為 a , 第二年為a(1+x) , 第三年為a(1+x)2.(2)常利用以下相等關(guān)系列方程: 第三年=第三年 或 第一年+第二年+第三年=總和.第23章 旋轉(zhuǎn)1、概念:把一個(gè)圖形繞著某一點(diǎn)O轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角2、旋轉(zhuǎn)的性質(zhì):(1) 旋轉(zhuǎn)前后的兩個(gè)圖形是全等形;(2) 兩個(gè)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等(3) 兩個(gè)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角 3、中心對(duì)稱(chēng):把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱(chēng)或中心對(duì)稱(chēng),這個(gè)點(diǎn)叫做對(duì)稱(chēng)中心 這兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做關(guān)于中心的對(duì)稱(chēng)點(diǎn) 4、中心對(duì)稱(chēng)的性質(zhì):(1)關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)稱(chēng)點(diǎn)所連線段都經(jīng)過(guò)對(duì)稱(chēng)中心,而且被對(duì)稱(chēng)中心所平分 (2)關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形是全等圖形 5、中心對(duì)稱(chēng)圖形:把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱(chēng)圖形,這個(gè)點(diǎn)就是它的對(duì)稱(chēng)中心 6、坐標(biāo)系中的中心對(duì)稱(chēng)兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng)時(shí),它們的坐標(biāo)符號(hào)相反,即點(diǎn)P(x,y)關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn)P(-x,-y)第24章 圓1、(要求深刻理解、熟練運(yùn)用)1.垂徑定理及推論: 如圖:有五個(gè)元素,“知二可推三”;需記憶其中四個(gè)定理,即“垂徑定理”“中徑定理” “弧徑定理”“中垂定理”. 幾何表達(dá)式舉例: CD過(guò)圓心CDAB3.“角、弦、弧、距”定理:(同圓或等圓中)“等角對(duì)等弦”; “等弦對(duì)等角”; “等角對(duì)等弧”; “等弧對(duì)等角”;“等弧對(duì)等弦”;“等弦對(duì)等(優(yōu),劣)弧”;“等弦對(duì)等弦心距”;“等弦心距對(duì)等弦”.幾何表達(dá)式舉例:(1) AOB=COD AB = CD (2) AB = CDAOB=COD(3)4圓周角定理及推論:(1)圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半;(2)一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半;(如圖)(3)“等弧對(duì)等角”“等角對(duì)等弧”;(4)“直徑對(duì)直角”“直角對(duì)直徑”;(如圖)(5)如三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形.(如圖)(1) (2)(3) (4)幾何表達(dá)式舉例:(1) ACB=AOB (2) AB是直徑 ACB=90(3) ACB=90 AB是直徑(4) CD=AD=BD ABC是Rt 5圓內(nèi)接四邊形性質(zhì)定理:圓內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角.幾何表達(dá)式舉例: ABCD是圓內(nèi)接四邊形 CDE =ABCC+A =1806切線的判定與性質(zhì)定理:如圖:有三個(gè)元素,“知二可推一”;需記憶其中四個(gè)定理.(1)經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線;(2)圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑;幾何表達(dá)式舉例:(1) OC是半徑OCABAB是切線(2) OC是半徑AB是切線OCAB9相交弦定理及其推論:(1)圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的乘積相等;(2)如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段長(zhǎng)的比例中項(xiàng).(1) (2)幾何表達(dá)式舉例:(1) PAPB=PCPD(2) AB是直徑PCABPC2=PAPB11關(guān)于兩圓的性質(zhì)定理:(1)相交兩圓的連心線垂直平分兩圓的公共弦;(2)如果兩圓相切,那么切點(diǎn)一定在連心線上. (1) (2)幾何表達(dá)式舉例:(1) O1,O2是圓心O1O2垂直平分AB(2) 1 、2相切O1 、A、O2三點(diǎn)一線12正多邊形的有關(guān)計(jì)算:(1)中心角an ,半徑RN , 邊心距rn , 邊長(zhǎng)an ,內(nèi)角bn , 邊數(shù)n;(2)有關(guān)計(jì)算在RtAOC中進(jìn)行.公式舉例:(1) an =;(2) 二 定理:1不在一直線上的三個(gè)點(diǎn)確定一個(gè)圓.2任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓.3正n邊形的半徑和邊心距把正n邊形分為2n個(gè)全等的直角三角形.三 公式:1.有關(guān)的計(jì)算:(1)圓的周長(zhǎng)C=2R;(2)弧長(zhǎng)L=;(3)圓的面積S=R2.(4)扇形面積S扇形 =;(5)弓形面積S弓形 =扇形面積SAOBAOB的面積.(如圖)2.圓柱與圓錐的側(cè)面展開(kāi)圖:(1)圓柱的側(cè)面積:S圓柱側(cè) =2rh; (r:底面半徑;h:圓柱高)(2)圓錐的側(cè)面積:S圓錐側(cè) =rR. (L=2r,R是圓錐母線長(zhǎng);r是底面半徑)四 常識(shí):1 圓是軸對(duì)稱(chēng)和中心對(duì)稱(chēng)圖形.2 圓心角的度數(shù)等于它所對(duì)弧的度數(shù).3 三角形的外心 兩邊中垂線的交點(diǎn) 三角形的外接圓的圓心;三角形的內(nèi)心 兩內(nèi)角平分線的交點(diǎn) 三角形的內(nèi)切圓的圓心.4 直線與圓的位置關(guān)系:(其中d表示圓心到直線的距離;其中r表示圓的半徑)直線與圓相交 dr ; 直線與圓相切 d=r ; 直線與圓相離 dr.5 圓與圓的位置關(guān)系:(其中d表示圓心到圓心的距離,其中R、r表示兩個(gè)圓的半徑且Rr)兩圓外離 dR+r; 兩圓外切 d=R+r; 兩圓相交 R-rdR+r;兩圓內(nèi)切 d=R-r; 兩圓內(nèi)含 dR-r.6證直線與圓相切,常利用:“已知交點(diǎn)連半徑證垂直”和“不知交點(diǎn)作垂直證半徑” 的方法加輔助線.第25章 概率1、 必然事件、不可能事件、隨機(jī)事件的區(qū)別2、概率一般地,在大量重復(fù)試驗(yàn)中,如果事件A發(fā)生的頻率會(huì)穩(wěn)定在某個(gè)常數(shù)p附近,那么這個(gè)常數(shù)p就叫做事件A的概率(probability), 記作P(A)= p. 注意:(1)概率是隨機(jī)事件發(fā)生的可能性的大小的數(shù)量反映.(2)概率是事件在大量重復(fù)試驗(yàn)中頻率逐漸穩(wěn)定到的值,即可以用大量重復(fù)試驗(yàn)中事件發(fā)生的頻率去估計(jì)得到事件發(fā)生的概率,但二者不能簡(jiǎn)單地等同.3、求概率的方法(1)用列舉法求概率(列表法、畫(huà)樹(shù)形圖法)(2)用頻率估計(jì)概率:一大面,可用大量重復(fù)試驗(yàn)中事件發(fā)生頻率來(lái)估計(jì)事件發(fā)生的概率.另一方面,大量重復(fù)試驗(yàn)中事件發(fā)生的頻率穩(wěn)定在某個(gè)常數(shù)(事件發(fā)生的概率)附近,說(shuō)明概率是個(gè)定值,而頻率隨不同試驗(yàn)次數(shù)而有所不同,是概率的近似值,二者不能簡(jiǎn)單地等同.第26章 二次函數(shù)1. 二次函數(shù)的一般形式:y=ax2+bx+c.(a0)2. 關(guān)于二次函數(shù)的幾個(gè)概念:二次函數(shù)的圖象是拋物線,所以也叫拋物線y=ax2+bx+c;拋物線關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng)且以對(duì)稱(chēng)軸為界,一半圖象上坡,另一半圖象下坡;其中c叫二次函數(shù)在y軸上的截距, 即二次函數(shù)圖象必過(guò)(0,c)點(diǎn).3. y=ax2 (a0)的特性:當(dāng)y=ax2+bx+c (a0)中的b=0且c=0時(shí)二次函數(shù)為y=ax2 (a0);這個(gè)二次函數(shù)是一個(gè)特殊的二次函數(shù),有下列特性:(1)圖象關(guān)于y軸對(duì)稱(chēng);(2)頂點(diǎn)(0,0); 4求二次函數(shù)的解析式:已知二次函數(shù)圖象上三點(diǎn)的坐標(biāo),可設(shè)解析式y(tǒng)=ax2+bx+c,并把這三點(diǎn)的坐標(biāo)代入,解關(guān)于a、b、c的三元一次方程組,求出a、b、c的值, 從而求出解析式-待定系數(shù)法.5二次函數(shù)的頂點(diǎn)式: y=a(x-h)2+k (a0); 由頂點(diǎn)式可直接得出二次函數(shù)的頂點(diǎn)坐標(biāo)(h, k),對(duì)稱(chēng)軸方程 x=h 和函數(shù)的最值 y最值= k.6求二次函數(shù)的解析式:已知二次函數(shù)的頂點(diǎn)坐標(biāo)(h,k)和圖象上的另一點(diǎn)的坐標(biāo),可設(shè)解析式為y=a(x -h)2+ k,再代入另一點(diǎn)的坐標(biāo)求a,從而求出解析式.7. 二次函數(shù)圖象的平行移動(dòng):二次函數(shù)一般應(yīng)先化為頂點(diǎn)式,然后才好判斷圖象的平行移動(dòng);y=a(x-h)2+k的圖象平行移動(dòng)時(shí),改變的是h, k的值, a值不變,具體規(guī)律如下:k值增大 圖象向上平移; k值減小 圖象向下平移;(x-h)值增大 圖象向左平移; (x-h)值減小 圖象向右平移.8. 二次函數(shù)y=ax2+bx+c (a0)的圖象及幾個(gè)重要點(diǎn)的公式: 9. 二次函數(shù)y=ax2+bx+c (a0)中,a、b、c與的符號(hào)與圖象的關(guān)系:(1) a0 拋物線開(kāi)口向上; a0 拋物線開(kāi)口向下;(2) c0 拋物線從原點(diǎn)上方通過(guò); c=0 拋物線從原點(diǎn)通過(guò);c0 拋物線從原點(diǎn)下方通過(guò);(3) a, b異號(hào) 對(duì)稱(chēng)軸在y軸的右側(cè); a, b同號(hào) 對(duì)稱(chēng)軸在y軸的左側(cè);b=0 對(duì)稱(chēng)軸是y軸;(4) b24ac0 拋物線與x軸有兩個(gè)交點(diǎn); b24ac =0 拋物線與x軸有一個(gè)交點(diǎn)(即相切);b24ac0 拋物線與x軸無(wú)交點(diǎn).10二次函數(shù)圖象的對(duì)稱(chēng)性:已知二次函數(shù)圖象上的點(diǎn)與對(duì)稱(chēng)軸,可利用圖象的對(duì)稱(chēng)性求出已知點(diǎn)的對(duì)稱(chēng)點(diǎn),這個(gè)對(duì)稱(chēng)點(diǎn)也一定在圖象上.第27章 相似形 (要求深刻理解、熟練運(yùn)用)1“平行出比例”定理及逆定理:(1)平行于三角形一邊的直線截其它兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例;(1)(3)(2)幾何表達(dá)式舉例:(1) DEBC (2) DEBC (3) DEBC 2比例的基本性質(zhì): a:b=c:d ad=bc ; 3定理:“平行”出相似平行于三角形一邊的直線和其它兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似.幾何表達(dá)式舉例:DEBCADEABC4定理:“AA”出相似如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似.幾何表達(dá)式舉例:A=A又AED=ACBADEABC5定理:“SAS”出相似如果一個(gè)三角形的兩條邊與另一個(gè)三角形的兩條邊對(duì)應(yīng)成比例,并且?jiàn)A角相等,那么這兩個(gè)三角形相似.幾何表達(dá)式舉例:又A=AADEABC 6“雙垂” 出相似及射影定理:(1)直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似;(2)雙垂圖形中,兩條直角邊是它在斜邊上的射影和斜邊的比例中項(xiàng),斜邊上的高是它分斜邊所成兩條線段的比例中項(xiàng).幾何表達(dá)式舉例:(1) ACCB又CDABACDCBDABC(2) ACCB CDABAC2=ADABBC2=BDBADC2=DADB7相似三角形性質(zhì):(1)相似三角形對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例;(2)相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比,對(duì)應(yīng)角平分線、周長(zhǎng)的比都等于相似比;(3)相似三角形面積的比,等于相似比的平方.(1) ABCEFG BAC=FEG (2) ABCEFG 又AD、EH是對(duì)應(yīng)中線(3) ABCEFG三 常識(shí):1三角形中,作平行線構(gòu)造相似形和已知中點(diǎn)構(gòu)造中位線是常用輔助線.2相似形有傳遞性;即: 12 23 13四、位似1、位似圖形:如果兩個(gè)多邊形不僅相似,而且對(duì)應(yīng)頂點(diǎn)的連線相交于一點(diǎn),且每組對(duì)應(yīng)邊互相平行,那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫做位似中心,這時(shí)的相似比又稱(chēng)為位似比2、掌握位似圖形概念,需注意:位似是一種具有位置關(guān)系的相似,所以?xún)蓚€(gè)圖形是位似圖形,必定是相似圖形,而相似圖形不一定是位似圖形;兩個(gè)位似圖形的位似中心只有一個(gè);兩個(gè)位似圖形可能位于位似中心的兩側(cè),也可能位于位似中心的同一側(cè);位似比就是相似比利用位似圖形的定義可判斷兩個(gè)圖形是否位似3、位似圖形首先是相似圖形,所以它具有相似圖形的一切性質(zhì)位似圖形是一種特殊的相似圖形,它又具有特殊的性質(zhì),位似圖形上任意一
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國(guó)聚苯硫醚市場(chǎng)十三五規(guī)劃及投資風(fēng)險(xiǎn)評(píng)估報(bào)告
- 2025-2030年中國(guó)稀土磁鋼行業(yè)運(yùn)營(yíng)狀況與發(fā)展?jié)摿Ψ治鰣?bào)告
- 2025-2030年中國(guó)祛斑養(yǎng)顏保健品行業(yè)運(yùn)行狀況及前景趨勢(shì)分析報(bào)告
- 2025-2030年中國(guó)電腦電源市場(chǎng)運(yùn)行動(dòng)態(tài)與營(yíng)銷(xiāo)策略研究報(bào)告
- 2025-2030年中國(guó)電子駐車(chē)制動(dòng)器EPB市場(chǎng)運(yùn)營(yíng)狀況與發(fā)展?jié)摿Ψ治鰣?bào)告
- 邢臺(tái)學(xué)院《工程結(jié)構(gòu)抗震設(shè)計(jì)原理》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖北民族大學(xué)《數(shù)據(jù)庫(kù)原理及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷
- 云南師范大學(xué)《電力系統(tǒng)分析》2023-2024學(xué)年第二學(xué)期期末試卷
- 武漢科技職業(yè)學(xué)院《動(dòng)物試驗(yàn)設(shè)計(jì)與統(tǒng)計(jì)分析》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川藝術(shù)職業(yè)學(xué)院《針灸學(xué)(實(shí)驗(yàn))》2023-2024學(xué)年第二學(xué)期期末試卷
- 無(wú)人機(jī)法律法規(guī)與安全飛行 第2版空域管理
- 我的小學(xué)生活
- 團(tuán)會(huì):紀(jì)念一二九運(yùn)動(dòng)
- 《商務(wù)溝通-策略、方法與案例》課件 第三章 書(shū)面溝通
- 2024具身大模型關(guān)鍵技術(shù)與應(yīng)用報(bào)告-哈爾濱工業(yè)大學(xué)
- 提高瓦屋面太陽(yáng)能板安裝一次驗(yàn)收合格率
- 2024上海市房屋租賃合同范本下載
- 安徽省六安市裕安區(qū)六安市獨(dú)山中學(xué)2024-2025學(xué)年高一上學(xué)期11月期中生物試題(含答案)
- CSC資助出國(guó)博士聯(lián)合培養(yǎng)研修計(jì)劃英文-research-plan
- 我的物品我做主班會(huì)
- 《外科護(hù)理學(xué)(第七版)》考試復(fù)習(xí)題庫(kù)-上(單選題)
評(píng)論
0/150
提交評(píng)論