




已閱讀5頁,還剩32頁未讀, 繼續(xù)免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
誤差理論與數(shù)據(jù)處理(第六版)緒論15 測得某三角塊的三個角度之和為180o0002”,試求測量的絕對誤差和相對誤差解:絕對誤差等于:相對誤差等于:1-8在測量某一長度時,讀數(shù)值為2.31m,其最大絕對誤差為20,試求其最大相對誤差。1-10檢定2.5級(即引用誤差為2.5%)的全量程為100V的電壓表,發(fā)現(xiàn)50V刻度點的示值誤差2V為最大誤差,問該電壓表是否合格? 該電壓表合格 1-12用兩種方法分別測量L1=50mm,L2=80mm。測得值各為50.004mm,80.006mm。試評定兩種方法測量精度的高低。 相對誤差L1:50mm L2:80mm 所以L2=80mm方法測量精度高。113 多級彈導火箭的射程為10000km時,其射擊偏離預定點不超過0.lkm,優(yōu)秀射手能在距離50m遠處準確地射中直徑為2cm的靶心,試評述哪一個射擊精度高?解:多級火箭的相對誤差為:射手的相對誤差為:多級火箭的射擊精度高。1-14若用兩種測量方法測量某零件的長度L1=110mm,其測量誤差分別為和;而用第三種測量方法測量另一零件的長度L2=150mm。其測量誤差為,試比較三種測量方法精度的高低。相對誤差 第三種方法的測量精度最高第二章 誤差的基本性質(zhì)與處理2-6測量某電路電流共5次,測得數(shù)據(jù)(單位為mA)為168.41,168.54,168.59,168.40,168.50。試求算術平均值及其標準差、或然誤差和平均誤差。 或然誤差:平均誤差:2-7在立式測長儀上測量某校對量具,重量測量5次,測得數(shù)據(jù)(單位為mm)為20.0015,20.0016,20.0018,20.0015,20.0011。若測量值服從正態(tài)分布,試以99%的置信概率確定測量結(jié)果。 正態(tài)分布 p=99%時, 測量結(jié)果:2-9用某儀器測量工件尺寸,在排除系統(tǒng)誤差的條件下,其標準差,若要求測量結(jié)果的置信限為,當置信概率為99%時,試求必要的測量次數(shù)。正態(tài)分布 p=99%時, 29 用某儀器測量工件尺寸,已知該儀器的標準差0.001mm,若要求測量的允許極限誤差為0.0015mm,而置信概率P為0.95時,應測量多少次?解:根據(jù)極限誤差的意義,有根據(jù)題目給定得已知條件,有查教材附錄表3有若n5,v4,0.05,有t2.78,若n4,v3,0.05,有t3.18,即要達題意要求,必須至少測量5次。2-12某時某地由氣壓表得到的讀數(shù)(單位為Pa)為102523.85,102391.30,102257.97,102124.65,101991.33,101858.01,101724.69,101591.36,其權各為1,3,5,7,8,6,4,2,試求加權算術平均值及其標準差。 2-13測量某角度共兩次,測得值為,其標準差分別為,試求加權算術平均值及其標準差。 2-14 甲、乙兩測量者用正弦尺對一錐體的錐角各重復測量5次,測得值如下:試求其測量結(jié)果。甲: 乙: 2-16重力加速度的20次測量具有平均值為、標準差為。另外30次測量具有平均值為,標準差為。假設這兩組測量屬于同一正態(tài)總體。試求此50次測量的平均值和標準差。 2-19對某量進行10次測量,測得數(shù)據(jù)為14.7,15.0,15.2,14.8,15.5,14.6,14.9,14.8,15.1,15.0,試判斷該測量列中是否存在系統(tǒng)誤差。 按貝塞爾公式 按別捷爾斯法 由 得 所以測量列中無系差存在。2-18對一線圈電感測量10次,前4次是和一個標準線圈比較得到的,后6次是和另一個標準線圈比較得到的,測得結(jié)果如下(單位為mH): 50.82,50.83,50.87,50.89; 50.78,50.78,50.75,50.85,50.82,50.81。 試判斷前4次與后6次測量中是否存在系統(tǒng)誤差。 使用秩和檢驗法: 排序:序號12345第一組第二組50.7550.7850.7850.8150.82序號678910第一組50.8250.8350.8750.89第二組50.85 T=5.5+7+9+10=31.5 查表 所以兩組間存在系差221 對某量進行兩組測量,測得數(shù)據(jù)如下:xi0.620.861.131.131.161.181.201.211.221.301.341.391.411.57yi0.991.121.211.251.311.311.381.411.481.591.601.601.841.95試用秩和檢驗法判斷兩組測量值之間是否有系統(tǒng)誤差。解:按照秩和檢驗法要求,將兩組數(shù)據(jù)混合排列成下表:T12345678910xi0.620.861.131.131.161.181.20yi0.991.121.21T11121314151617181920xi1.211.221.301.341.391.41yi1.251.311.311.38T2122232425262728xi1.57yi1.411.481.591.601.601.841.95現(xiàn)nx14,ny14,取xi的數(shù)據(jù)計算T,得T154。由;求出:現(xiàn)取概率2,即,查教材附表1有。由于,因此,可以認為兩組數(shù)據(jù)間沒有系統(tǒng)誤差。第三章 誤差的合成與分配3-1相對測量時需用的量塊組做標準件,量塊組由四塊量塊研合而成,它們的基本尺寸為,。經(jīng)測量,它們的尺寸偏差及其測量極限誤差分別為,。試求量塊組按基本尺寸使用時的修正值及給相對測量帶來的測量誤差。修正值= = =0.4測量誤差: = = =3-2 為求長方體體積,直接測量其各邊長為,,已知測量的系統(tǒng)誤差為,測量的極限誤差為, 試求立方體的體積及其體積的極限誤差。 體積V系統(tǒng)誤差為:立方體體積實際大小為:測量體積最后結(jié)果表示為:3-4 測量某電路的電流,電壓,測量的標準差分別為,求所耗功率及其標準差。 成線性關系 312 按公式V=r2h求圓柱體體積,若已知r約為2cm,h約為20cm,要使體積的相對誤差等于1,試問r和h測量時誤差應為多少?解: 若不考慮測量誤差,圓柱體積為根據(jù)題意,體積測量的相對誤差為1,即測定體積的相對誤差為:即現(xiàn)按等作用原則分配誤差,可以求出測定r的誤差應為:測定h的誤差應為:3-14對某一質(zhì)量進行4次重復測量,測得數(shù)據(jù)(單位g)為428.6,429.2,426.5,430.8。已知測量的已定系統(tǒng)誤差測量的各極限誤差分量及其相應的傳遞系數(shù)如下表所示。若各誤差均服從正態(tài)分布,試求該質(zhì)量的最可信賴值及其極限誤差。序號極限誤差g誤差傳遞系數(shù)隨機誤差未定系統(tǒng)誤差123456782.14.51.01.51.00.52.21.8111111.42.21 最可信賴值 測量結(jié)果表示為:第四章 測量不確定度41 某圓球的半徑為r,若重復10次測量得rr =(3.1320.005)cm,試求該圓球最大截面的圓周和面積及圓球體積的測量不確定度,置信概率P=99。解:求圓球的最大截面的圓周的測量不確定度已知圓球的最大截面的圓周為:其標準不確定度應為: 0.0314cm確定包含因子。查t分布表t0.01(9)3.25,及K3.25故圓球的最大截面的圓周的測量不確定度為:UKu3.250.03140.102求圓球的體積的測量不確定度圓球體積為:其標準不確定度應為:確定包含因子。查t分布表t0.01(9)3.25,及K3.25最后確定的圓球的體積的測量不確定度為UKu3.250.6162.0024-4某校準證書說明,標稱值10的標準電阻器的電阻R在20時為(P=99%),求該電阻器的標準不確定度,并說明屬于哪一類評定的不確定度。由校準證書說明給定 屬于B類評定的不確定度 R在10.000742-129,10.000742+129范圍內(nèi)概率為99%,不為100% 不屬于均勻分布,屬于正態(tài)分布 當p=99%時, 4-5在光學計上用52.5mm的量塊組作為標準件測量圓柱體直徑,量塊組由三塊量塊研合而成,其尺寸分別是:, ,量塊按“級”使用,經(jīng)查手冊得其研合誤差分別不超過、(取置信概率P=99.73%的正態(tài)分布),求該量塊組引起的測量不確定度。 第五章 線性參數(shù)的最小二乘法處理5-1測量方程為試求x、y的最小二乘法處理及其相應精度。誤差方程為列正規(guī)方程代入數(shù)據(jù)得解得 將x、y代入誤差方程式測量數(shù)據(jù)的標準差為求解不定乘數(shù) 解得 x、y的精度分別為 5-7不等精度測量的方程組如下:試求x、y的最小二乘法處理及其相應精度。列誤差方程正規(guī)方程為代入數(shù)據(jù)得解得 將x、y代入誤差方程可得則測量數(shù)據(jù)單位權標準差為求解不定乘數(shù) 解得 x、y的精度分別為 第六章 回歸分析6-1材料的抗剪強度與材料承受的正應力有關。對某種材料試驗的數(shù)據(jù)如下:正應力 x/Pa26.825.428.923.627.723.9抗剪強度 y/Pa26.527.324.227.123.625.9正應力 x/Pa24.728.126.927.422.625.6抗剪強度 y/Pa26.322.521.721.425.824.9假設正應力的數(shù)值是正確的,求(1)抗剪強度與正應力之間的線性回歸方程。(2)當正應力為24.5Pa時,抗剪強度的估計值是多少?(1)設一元線形回歸方程 (2)當X=24.5Pa6-10 用直線檢驗法驗證下列數(shù)據(jù)可以用曲線表示。x30354045505560y-0.4786-2.188-11.22-45.71-208.9-870.9-3802 取點做下表Z230405060Z1-0.321.052.323.58以Z1與Z2畫圖所得到圖形為一條直線,故選用函數(shù)類型合適工程光學基礎教程(課后重點習題答案)第一章習題1、已知真空中的光速c3m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大樹膠(n=1.526)、金剛石(n=2.417)等介質(zhì)中的光速。 解:則當光在水中,n=1.333時,v=2.25m/s, 當光在冕牌玻璃中,n=1.51時,v=1.99m/s, 當光在火石玻璃中,n1.65時,v=1.82m/s, 當光在加拿大樹膠中,n=1.526時,v=1.97m/s, 當光在金剛石中,n=2.417時,v=1.24m/s。 2、一物體經(jīng)針孔相機在屏上成一60mm大小的像,若將屏拉遠50mm,則像的大小變?yōu)?0mm,求屏到針孔的初始距離。解:在同種均勻介質(zhì)空間中光線直線傳播,如果選定經(jīng)過節(jié)點的光線則方向不變,令屏到針孔的初始距離為x,則可以根據(jù)三角形相似得出: 所以x=300mm即屏到針孔的初始距離為300mm。3、一厚度為200mm的平行平板玻璃(設n=1.5),下面放一直徑為1mm的金屬片。若在玻璃板上蓋一圓形紙片,要求在玻璃板上方任何方向上都看不到該金屬片,問紙片最小直徑應為多少? 解:令紙片最小半徑為x, 則根據(jù)全反射原理,光束由玻璃射向空氣中時滿足入射角度大于或等于全反射臨界角時均會發(fā)生全反射,而這里正是由于這個原因?qū)е略诓AО迳戏娇床坏浇饘倨?。而全反射臨界角求取方法為: (1)其中n2=1,n1=1.5, 同時根據(jù)幾何關系,利用平板厚度和紙片以及金屬片的半徑得到全反射臨界角的計算方法為: (2)聯(lián)立(1)式和(2)式可以求出紙片最小直徑x=179.385mm, 所以紙片最小直徑為358.77mm。 4、光纖芯的折射率為n1、包層的折射率為n2,光纖所在介質(zhì)的折射率為n0,求光纖的數(shù)值孔徑(即n0sinI1,其中I1為光在光纖內(nèi)能以全反射方式傳播時在入射端面的最大入射角)。 解:位于光纖入射端面,滿足由空氣入射到光纖芯中,應用折射定律則有:n0sinI1=n2sinI2(1)而當光束由光纖芯入射到包層的時候滿足全反射,使得光束可以在光纖內(nèi)傳播,則有: (2) 由(1)式和(2)式聯(lián)立得到n0 sinI1.5、一束平行細光束入射到一半徑r=30mm、折射率n=1.5的玻璃球上,求其會聚點的位置。如果在凸面鍍反射膜,其會聚點應在何處?如果在凹面鍍反射膜,則反射光束在玻璃中的會聚點又在何處?反射光束經(jīng)前表面折射后,會聚點又在何處?說明各會聚點的虛實。 解:該題可以應用單個折射面的高斯公式來解決, 設凸面為第一面,凹面為第二面。 (1)首先考慮光束射入玻璃球第一面時的狀態(tài),使用高斯公式: 會聚點位于第二面后15mm處。 (2) 將第一面鍍膜,就相當于凸面鏡 像位于第一面的右側(cè),只是延長線的交點,因此是虛像。 還可以用正負判斷:(3)光線經(jīng)過第一面折射:, 虛像 第二面鍍膜,則: 得到: (4) 再經(jīng)過第一面折射物像相反為虛像。 6、一直徑為400mm,折射率為1.5的玻璃球中有兩個小氣泡,一個位于球心,另一個位于12半徑處。沿兩氣泡連線方向在球兩邊觀察,問看到的氣泡在何處?如果在水中觀察,看到的氣泡又在何處? 解:設一個氣泡在中心處,另一個在第二面和中心之間。 (1)從第一面向第二面看 (2)從第二面向第一面看 (3)在水中 7、有一平凸透鏡r1=100mm,r2=,d=300mm,n=1.5,當物體在時,求高斯像的位置l。在第二面上刻一十字絲,問其通過球面的共軛像在何處?當入射高度h=10mm,實際光線的像方截距為多少?與高斯像面的距離為多少?解: 8、一球面鏡半徑r=-100mm,求0 ,-0.1 ,-0.2 ,-1 ,1 ,5,10,時的物距像距。解:(1)(2) 同理, (3)同理,(4)同理, (5)同理,(6)同理, (7)同理,(8)同理,9、一物體位于半徑為r 的凹面鏡前什么位置時,可分別得到:放大4倍的實像,當大4倍的虛像、縮小4倍的實像和縮小4倍的虛像? 解:(1)放大4倍的實像 (2)放大四倍虛像 (3)縮小四倍實像 (4)縮小四倍虛像 第二章習題 1、已知照相物鏡的焦距f75mm,被攝景物位于(以F點為坐標原點)x=處,試求照相底片應分別放在離物鏡的像方焦面多遠的地方。 解: (1)x= - ,xx=ff 得到:x=0 (2)x=0.5625 (3)x=0.703(4)x=0.937 (5)x=1.4(6)x=2.812、設一系統(tǒng)位于空氣中,垂軸放大率,由物面到像面的距離3已知一個透鏡把物體放大-3x(共軛距離)為7200mm,物鏡兩焦點間距離為1140mm,求物鏡的焦距,并繪制基點位置圖。 3已知一個透鏡把物體放大-3x解: 3已知一個透鏡把物體放大-3x3已知一個透鏡把物體放大-3x 3.已知一個透鏡把物體放大-3倍投影在屏幕上,當透鏡向物體移近18mm時,物體將被放大-4x試求透鏡的焦距,并用圖解法校核之。解: 4一個薄透鏡對某一物體成實像,放大率為-1x,今以另一個薄透鏡緊貼在第一個透鏡上,則見像向透鏡方向移動20mm,放大率為原先的3/4倍,求兩塊透鏡的焦距為多少?解: 5有一正薄透鏡對某一物成倒立的實像,像高為物高的一半,今將物面向透鏡移近100mm,則所得像與物同大小,求該正透鏡組的焦距。解: 6希望得到一個對無限遠成像的長焦距物鏡,焦距=1200mm,由物鏡頂點到像面的距離L=700 mm,由系統(tǒng)最后一面到像平面的距離(工作距)為,按最簡單結(jié)構的薄透鏡系統(tǒng)考慮,求系統(tǒng)結(jié)構,并畫出光路圖。解:7一短焦距物鏡,已知其焦距為35 mm,筒長L=65 mm,工作距,按最簡單結(jié)構的薄透鏡系統(tǒng)考慮,求系統(tǒng)結(jié)構。解: 8已知一透鏡 求其焦距、光焦度。 解: 9一薄透鏡組焦距為100 mm,和另一焦距為50 mm的薄透鏡組合,其組合焦距仍為100 mm,問兩薄透鏡的相對位置。 解: 10長60 mm,折射率為1.5的玻璃棒,在其兩端磨成曲率半徑為10 mm的凸球面,試求其焦距。 解: 11一束平行光垂直入射到平凸透鏡上,會聚于透鏡后480 mm處,如在此透鏡凸面上鍍銀,則平行光會聚于透鏡前80 mm處,求透鏡折射率和凸面曲率半徑。解: 第三章習題1人照鏡子時,要想看到自己的全身,問鏡子要多長?人離鏡子的距離有沒有關系? 解: 鏡子的高度為1/2人身高,和前后距離無關。2設平行光管物鏡L的焦距=1000mm,頂桿與光軸的距離a=10 mm,如果推動頂桿使平面鏡傾斜,物鏡焦點F的自準直像相對于F產(chǎn)生了y=2 mm的位移,問平面鏡的傾角為多少?頂桿的移動量為多少? 解: 3一光學系統(tǒng)由一透鏡和平面鏡組成,如圖3-29所示,平面鏡MM與透鏡光軸垂直交于D點,透鏡前方離平面鏡600 mm有一物體AB,經(jīng)透鏡和平面鏡后,所成虛像至平面鏡的距離為150 mm,且像高為物高的一半,試分析透鏡焦距的正負,確定透鏡的位置和焦距,并畫出光路圖。 解:平面鏡成=1的像,且分別在鏡子兩側(cè),物像虛實相反。 4用焦距=450mm的翻拍物鏡拍攝文件,文件上壓一塊折射率n=1.5,厚度d=15mm的玻璃平板,若拍攝倍率,試求物鏡后主面到平板玻璃第一面的距離。解: 此為平板平移后的像。 5棱鏡折射角 ,C光的最小偏向角,試求棱鏡光學材料的折射率。 解: 6白光經(jīng)過頂角 的色散棱鏡,n=1.51的色光處于最小偏向角,試求其最小偏向角值及n=1.52的色光相對于n=1.51的色光間的交角。解:第四章習題1 二個薄凸透鏡構成的系統(tǒng),其中,位于后,若入射平行光,請判斷一下孔徑光闌,并求出入瞳的位置及大小。解:判斷孔徑光闌:第一個透鏡對其前面所成像為本身, 第二個透鏡對其前面所成像為,其位置: 大小為: 故第一透鏡為孔闌,其直徑為4厘米.它同時為入瞳.2設照相物鏡的焦距等于75mm,底片尺寸為55 55,求該照相物鏡的最大視場角等于多少?解: 第五章習題1、 一個100W的鎢絲燈,發(fā)出總光通量為,求發(fā)光效率為多少? 解: 2、有一聚光鏡, (數(shù)值孔徑),求進入系統(tǒng)的能量占全部能量的百分比。解: 而一點周圍全部空間的立體角為 3、一個 的鎢絲燈,已知:,該燈與一聚光鏡聯(lián)用,燈絲中心對聚光鏡所張的孔徑角,若設燈絲是各向均勻發(fā)光,求1)燈泡總的光通量及進入聚光鏡的能量;2)求平均發(fā)光強度 解: 4、一個 的鎢絲燈發(fā)出的總的光通量為,設各向發(fā)光強度相等,求以燈為中心,半徑分別為:時的球面的光照度是多少? 解: 5、一房間,長、寬、高分別為: ,一個發(fā)光強度為的燈掛在天花板中心,離地面,1)求燈正下方地板上的光照度;2)在房間角落處地板上的光照度。 解: 第六章習題1如果一個光學系統(tǒng)的初級子午彗差等于焦寬(),則應等于多少?解:2如果一個光學系統(tǒng)的初級球差等于焦深 (),則應為多少? 解:3 設計一雙膠合消色差望遠物鏡, ,采用冕牌玻璃K9(,)和火石玻璃F2( , ),若正透鏡半徑,求:正負透鏡的焦距及三個球面的曲率半徑。解: 4指出圖6-17中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二年級下冊春天花朵課件語
- 2025年勞務員之勞務員基礎知識過關檢測試卷B卷附答案
- 猜謎課件圖片大全小學生
- 2024新春年貨節(jié)民俗文化展示活動方案
- 府君山天橋工程可行性研究報告
- 商住樓設計規(guī)范
- 江西招聘考試試題及答案
- 智慧工地考試試題及答案
- 水果主題活動方案
- 創(chuàng)新創(chuàng)業(yè)項目計劃書親子
- 煙花爆竹零售經(jīng)營場所安全管理新規(guī)制度
- 青綠色中國農(nóng)業(yè)科學院考研復試模板
- 能源轉(zhuǎn)型與綠色發(fā)展
- 2024年杭州錢塘新區(qū)產(chǎn)業(yè)發(fā)展集團有限公司招聘筆試沖刺題(帶答案解析)
- 數(shù)字經(jīng)濟下平臺化人力資源管理對員工創(chuàng)新績效的影響研究-數(shù)字能力的調(diào)節(jié)效應
- 建筑工程 施工組織設計范本
- Module4Unit11Chinesefestivals單元(教學設計)滬教牛津版(深圳用)英語五年級下冊
- 三亞旅游宣傳含內(nèi)容
- 2024年浙江省寧波市鄞州區(qū)部分學校九年級6月中考聯(lián)考英語試卷
- 中醫(yī)內(nèi)科學2黃疸
- 人工智能中的因果驅(qū)動智慧樹知到期末考試答案章節(jié)答案2024年湘潭大學
評論
0/150
提交評論