考研大綱2013考研數(shù)學二、數(shù)學三考試大綱及大綱解析匯總考試科目:高等數(shù)學、線性代數(shù)、微積分、概率論與數(shù)理統(tǒng)計_第1頁
考研大綱2013考研數(shù)學二、數(shù)學三考試大綱及大綱解析匯總考試科目:高等數(shù)學、線性代數(shù)、微積分、概率論與數(shù)理統(tǒng)計_第2頁
考研大綱2013考研數(shù)學二、數(shù)學三考試大綱及大綱解析匯總考試科目:高等數(shù)學、線性代數(shù)、微積分、概率論與數(shù)理統(tǒng)計_第3頁
考研大綱2013考研數(shù)學二、數(shù)學三考試大綱及大綱解析匯總考試科目:高等數(shù)學、線性代數(shù)、微積分、概率論與數(shù)理統(tǒng)計_第4頁
考研大綱2013考研數(shù)學二、數(shù)學三考試大綱及大綱解析匯總考試科目:高等數(shù)學、線性代數(shù)、微積分、概率論與數(shù)理統(tǒng)計_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、2013考研數(shù)學(二)數(shù)學(三)考試大綱匯總考試科目:高等數(shù)學、線性代數(shù)、微積分、概率論與數(shù)理統(tǒng)計2013考研數(shù)學(二)考試大綱考試科目:高等數(shù)學、線性代數(shù)考試形式和試卷結構一、試卷滿分及考試時間試卷滿分為150分,考試時間為180分鐘二、答題方式答題方式為閉卷、筆試三、試卷內(nèi)容結構高等教學約78線性代數(shù)約22%四、試卷題型結構試卷題型結構為:單項選擇題 8小題,每小題4分,共32分填空題 6小題,每小題4分,共24分解答題(包括證明題) 9小題,共94分高等數(shù)學一、函數(shù)、極限、連續(xù)考試內(nèi)容函數(shù)的概念及表示法 函數(shù)的有界性、單調性、周期性和奇偶性 復合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函

2、數(shù)的性質及其圖形 初等函數(shù) 函數(shù)關系的建立 數(shù)列極限與函數(shù)極限的定義及其性質 函數(shù)的左極限與右極限 無窮小量和無窮大量的概念及其關系 無窮小量的性質及無窮小量的比較 極限的四則運算 極限存在的兩個準則:單調有界準則和夾逼準則 兩個重要極限:, 函數(shù)連續(xù)的概念 函數(shù)間斷點的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質考試要求1理解函數(shù)的概念,掌握函數(shù)的表示法,并會建立應用問題的函數(shù)關系2了解函數(shù)的有界性、單調性、周期性和奇偶性3理解復合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念4掌握基本初等函數(shù)的性質及其圖形,了解初等函數(shù)的概念5理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在

3、與左極限、右極限之間的關系6掌握極限的性質及四則運算法則7掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法8理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限 9理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型10了解連續(xù)函數(shù)的性質和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(有界性、最大值和最小值定理、介值定理),并會應用這些性質二、一元函數(shù)微分學考試內(nèi)容導數(shù)和微分的概念導數(shù)的幾何意義和物理意義函數(shù)的可導性與連續(xù)性之間的關系平面曲線的切線和法線導數(shù)和微分的四則運算基本初等函數(shù)的導數(shù)復合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確

4、定的函數(shù)的微分法高階導數(shù)一階微分形式的不變性微分中值定理洛必達(LHospital)法則函數(shù)單調性的判別函數(shù)的極值函數(shù)圖形的凹凸性、拐點及漸近線函數(shù)圖形的描繪函數(shù)的最大值與最小值弧微分曲率的概念曲率圓與曲率半徑考試要求1理解導數(shù)和微分的概念,理解導數(shù)與微分的關系,理解導數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導數(shù)的物理意義,會用導數(shù)描述一些物理量,理解函數(shù)的可導性與連續(xù)性之間的關系2掌握導數(shù)的四則運算法則和復合函數(shù)的求導法則,掌握基本初等函數(shù)的導數(shù)公式了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分3了解高階導數(shù)的概念,會求簡單函數(shù)的高階導數(shù)4會求分段函數(shù)的導數(shù),會求隱

5、函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導數(shù)5理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西( Cauchy )中值定理6掌握用洛必達法則求未定式極限的方法7理解函數(shù)的極值概念,掌握用導數(shù)判斷函數(shù)的單調性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應用8會用導數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間內(nèi),設函數(shù)具有二階導數(shù)當時,的圖形是凹的;當時,的圖形是凸的),會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形9了解曲率、曲率圓和曲率半徑的概念,會計算曲率和曲率半徑三、一元函數(shù)積分學考試內(nèi)容原函數(shù)和不定積分的概念不定

6、積分的基本性質基本積分公式定積分的概念和基本性質定積分中值定理積分上限的函數(shù)及其導數(shù)牛頓-萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積分法與分部積分法有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分反常(廣義)積分定積分的應用考試要求1理解原函數(shù)的概念,理解不定積分和定積分的概念2掌握不定積分的基本公式,掌握不定積分和定積分的性質及定積分中值定理,掌握換元積分法與分部積分法3會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分4理解積分上限的函數(shù),會求它的導數(shù),掌握牛頓一萊布尼茨公式5了解反常積分的概念,會計算反常積分6掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積

7、、平面曲線的弧長、旋轉體的體積及側面積、平行截面面積為已知的立體體積、功、引力、壓力、質心、形心等)及函數(shù)的平均值四、多元函數(shù)微積分學考試內(nèi)容多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限與連續(xù)的概念有界閉區(qū)域上二元連續(xù)函數(shù)的性質多元函數(shù)的偏導數(shù)和全微分 多元復合函數(shù)、隱函數(shù)的求導法二階偏導數(shù)多元函數(shù)的極值和條件極值、最大值和最小值二重積分的概念、基本性質和計算考試要求1了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義2了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質3了解多元函數(shù)偏導數(shù)與全微分的概念,會求多元復合函數(shù)一階、二階偏導數(shù),會求全微分,了解隱函數(shù)存在定理,會求多元隱函數(shù)

8、的偏導數(shù)4了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并會解決一些簡單的應用問題5了解二重積分的概念與基本性質,掌握二重積分的計算方法(直角坐標、極坐標)五、常微分方程考試內(nèi)容常微分方程的基本概念變量可分離的微分方程齊次微分方程一階線性微分方程可降階的高階微分方程線性微分方程解的性質及解的結構定理二階常系數(shù)齊次線性微分方程高于二階的某些常系數(shù)齊次線性微分方程簡單的二階常系數(shù)非齊次線性微分方程微分方程的簡單應用考試要求1了解微分方程及其階、解、通解、初始條件和

9、特解等概念2掌握變量可分離的微分方程及一階線性微分方程的解法,會解齊次微分方程3會用降階法解下列形式的微分方程: 和 4理解二階線性微分方程解的性質及解的結構定理5掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程6會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程7會用微分方程解決一些簡單的應用問題線性代數(shù)一、行列式考試內(nèi)容行列式的概念和基本性質行列式按行(列)展開定理考試要求1了解行列式的概念,掌握行列式的性質 2會應用行列式的性質和行列式按行(列)展開定理計算行列式二、矩陣考試內(nèi)容矩陣的概念矩陣的線性運算矩陣的乘法

10、方陣的冪方陣乘積的行列式矩陣的轉置逆矩陣的概念和性質矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價 分塊矩陣及其運算考試要求1理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣、反對稱矩陣和正交矩陣以及它們的性質2掌握矩陣的線性運算、乘法、轉置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質3理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣4了解矩陣初等變換的概念,了解初等矩陣的性質和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法5了解分塊矩陣及其運算三、向量考試內(nèi)

11、容向量的概念向量的線性組合和線性表示向量組的線性相關與線性無關向量組的極大線性無關組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關系向量的內(nèi)積線性無關向量組的的正交規(guī)范化方法考試要求1理解維向量、向量的線性組合與線性表示的概念2理解向量組線性相關、線性無關的概念,掌握向量組線性相關、線性無關的有關性質及判別法3了解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩 4了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩的關系5了解內(nèi)積的概念,掌握線性無關向量組正交規(guī)范化的施密特(Schmidt)方法四、線性方程組考試內(nèi)容線性方程組的克拉默(Cramer)法則齊次線性

12、方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件線性方程組解的性質和解的結構齊次線性方程組的基礎解系和通解非齊次線性方程組的通解考試要求1會用克拉默法則2理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件3理解齊次線性方程組的基礎解系及通解的概念,掌握齊次線性方程組基礎解系和通解的求法4理解非齊次線性方程組的解的結構及通解的概念5會用初等行變換求解線性方程組五、矩陣的特征值及特征向量考試內(nèi)容矩陣的特征值和特征向量的概念、性質 相似矩陣的概念及性質 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特征值、特征向量及其相似對角矩陣考試要求1理解矩陣

13、的特征值和特征向量的概念及性質,會求矩陣特征值和特征向量2理解相似矩陣的概念、性質及矩陣可相似對角化的充分必要條件,會將矩陣化為相似對角矩陣3理解實對稱矩陣的特征值和特征向量的性質六、二次型考試內(nèi)容二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標準形和規(guī)范形 用正交變換和配方法化二次型為標準形 二次型及其矩陣的正定性考試要求1了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念2了解二次型的秩的概念,了解二次型的標準形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標準形3理解正定二次型、正定矩陣的概念,并掌握其判別法 2013考研數(shù)學(三

14、)考試大綱考試科目:微積分線性代數(shù)概率論與數(shù)理統(tǒng)計考試形式和試卷結構一、試卷滿分及考試時間試卷滿分為150分,考試時間為180分鐘二、答題方式答題方式為閉卷、筆試三、試卷內(nèi)容結構微積分約56線性代數(shù)約22%概率論與數(shù)理統(tǒng)計22四、試卷題型結構試卷題型結構為:單項選擇題選題 8小題,每題4分,共32分填空題 6小題,每題4分,共24分解答題(包括證明題) 9小題,共94分微積分一、函數(shù)、極限、連續(xù)考試內(nèi)容 函數(shù)的概念及表示法 函數(shù)的有界性單調性周期性和奇偶性 復合函數(shù)反函數(shù)分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質及其圖形 初等函數(shù) 函數(shù)關系的建立 數(shù)列極限與函數(shù)極限的定義及其性質 函數(shù)的左極限和右極

15、限 無窮小量和無窮大量的概念及其關系 無窮小量的性質及無窮小量的比較 極限的四則運算 極限存在的兩個準則:單調有界準則和夾逼準則 兩個重要極限: 函數(shù)連續(xù)的概念 函數(shù)間斷點的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質考試要求1理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應用問題的函數(shù)關系2了解函數(shù)的有界性單調性周期性和奇偶性3理解復合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念4掌握基本初等函數(shù)的性質及其圖形,了解初等函數(shù)的概念5了解數(shù)列極限和函數(shù)極限(包括左極限與右極限)的概念6了解極限的性質與極限存在的兩個準則,掌握極限的四則運算法則,掌握利用兩個重要極限求極限的方法7理解無窮小的概念和

16、基本性質掌握無窮小量的比較方法了解無窮大量的概念及其與無窮小量的關系8理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型9了解連續(xù)函數(shù)的性質和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(有界性、最大值和最小值定理介值定理),并會應用這些性質二、一元函數(shù)微分學考試內(nèi)容 導數(shù)和微分的概念 導數(shù)的幾何意義和經(jīng)濟意義 函數(shù)的可導性與連續(xù)性之間的關系 平面曲線的切線與法線 導數(shù)和微分的四則運算 基本初等函數(shù)的導數(shù) 復合函數(shù)反函數(shù)和隱函數(shù)的微分法 高階導數(shù) 一階微分形式的不變性 微分中值定理 洛必達(LHospital)法則 函數(shù)單調性的判別 函數(shù)的極值 函數(shù)圖形的凹凸性拐點及漸近線 函數(shù)

17、圖形的描繪 函數(shù)的最大值與最小值考試要求1理解導數(shù)的概念及可導性與連續(xù)性之間的關系,了解導數(shù)的幾何意義與經(jīng)濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程2掌握基本初等函數(shù)的導數(shù)公式導數(shù)的四則運算法則及復合函數(shù)的求導法則,會求分段函數(shù)的導數(shù) 會求反函數(shù)與隱函數(shù)的導數(shù)3了解高階導數(shù)的概念,會求簡單函數(shù)的高階導數(shù)4了解微分的概念,導數(shù)與微分之間的關系以及一階微分形式的不變性,會求函數(shù)的微分5理解羅爾(Rolle)定理拉格朗日( Lagrange)中值定理了解泰勒定理柯西(Cauchy)中值定理,掌握這四個定理的簡單應用6會用洛必達法則求極限7掌握函數(shù)單調性的判別方法,了解函數(shù)極值的概

18、念,掌握函數(shù)極值、最大值和最小值的求法及其應用8會用導數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間內(nèi),設函數(shù)具有二階導數(shù)當時,的圖形是凹的;當時,的圖形是凸的),會求函數(shù)圖形的拐點和漸近線9會描述簡單函數(shù)的圖形三、一元函數(shù)積分學考試內(nèi)容 原函數(shù)和不定積分的概念 不定積分的基本性質 基本積分公式 定積分的概念和基本性質 定積分中值定理 積分上限的函數(shù)及其導數(shù) 牛頓一萊布尼茨(Newton- Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 反常(廣義)積分 定積分的應用考試要求1理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質和基本積分公式,掌握不定積分的換元積分法和分部積分法2了解定積分

19、的概念和基本性質,了解定積分中值定理,理解積分上限的函數(shù)并會求它的導數(shù),掌握牛頓一萊布尼茨公式以及定積分的換元積分法和分部積分法3會利用定積分計算平面圖形的面積旋轉體的體積和函數(shù)的平均值,會利用定積分求解簡單的經(jīng)濟應用問題4了解反常積分的概念,會計算反常積分四、多元函數(shù)微積分學考試內(nèi)容 多元函數(shù)的概念 二元函數(shù)的幾何意義 二元函數(shù)的極限與連續(xù)的概念 有界閉區(qū)域上二元連續(xù)函數(shù)的性質 多元函數(shù)偏導數(shù)的概念與計算 多元復合函數(shù)的求導法與隱函數(shù)求導法 二階偏導數(shù) 全微分 多元函數(shù)的極值和條件極值最大值和最小值 二重積分的概念基本性質和計算 無界區(qū)域上簡單的反常二重積分考試要求1了解多元函數(shù)的概念,了解

20、二元函數(shù)的幾何意義2了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質3了解多元函數(shù)偏導數(shù)與全微分的概念,會求多元復合函數(shù)一階、二階偏導數(shù),會求全微分,會求多元隱函數(shù)的偏導數(shù)4了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并會解決簡單的應用問題5了解二重積分的概念與基本性質,掌握二重積分的計算方法(直角坐標極坐標)了解無界區(qū)域上較簡單的反常二重積分并會計算五、無窮級數(shù)考試內(nèi)容 常數(shù)項級數(shù)收斂與發(fā)散的概念收斂級數(shù)的和的概念級數(shù)的基本性質與收斂的必

21、要條件幾何級數(shù)與級數(shù)及其收斂性正項級數(shù)收斂性的判別法任意項級杰的絕對收斂與條件收斂交錯級數(shù)與萊布尼茨定理冪級數(shù)及其收斂半徑收斂區(qū)間(指開區(qū)間)和收斂域冪級數(shù)的和函數(shù)冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質簡單冪級數(shù)的和函數(shù)的求法初等函數(shù)的冪級數(shù)展開式考試要求1了解級數(shù)的收斂與發(fā)散收斂級數(shù)的和的概念2了解級數(shù)的基本性質和級數(shù)收斂的必要條件,掌握幾何級數(shù)及級數(shù)的收斂與發(fā)散的條件,掌握正項級數(shù)收斂性的比較判別法和比值判別法3了解任意項級數(shù)絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系,了解交錯級數(shù)的萊布尼茨判別法4會求冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域5了解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(和函數(shù)的連續(xù)性、逐

22、項求導和逐項積分),會求簡單冪級數(shù)在其收斂區(qū)間內(nèi)的和函數(shù)6了解及的麥克勞林(Maclaurin)展開式六、常微分方程與差分方程考試內(nèi)容 常微分方程的基本概念變量可分離的微分方程齊次微分方程一階線性微分方程線性微分方程解的性質及解的結構定理 二階常系數(shù)齊次線性微分方程及簡單的非齊次線性微分方程差分與差分方程的概念差分方程的通解與特解一階常系數(shù)線性差分方程微分方程的簡單應用考試要求1了解微分方程及其階、解、通解、初始條件和特解等概念2掌握變量可分離的微分方程齊次微分方程和一階線性微分方程的求解方法3會解二階常系數(shù)齊次線性微分方程4了解線性微分方程解的性質及解的結構定理,會解自由項為多項式指數(shù)函數(shù)正

23、弦函數(shù)余弦函數(shù)的二階常系數(shù)非齊次線性微分方程5了解差分與差分方程及其通解與特解等概念6了解一階常系數(shù)線性差分方程的求解方法7會用微分方程求解簡單的經(jīng)濟應用問題線性代數(shù)一、行列式考試內(nèi)容行列式的概念和基本性質行列式按行(列)展開定理考試要求1.了解行列式的概念,掌握行列式的性質2.會應用行列式的性質和行列式按行(列)展開定理計算行列式二、矩陣考試內(nèi)容矩陣的概念矩陣的線性運算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉置逆矩陣的概念和性質矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價 分塊矩陣及其運算考試要求1理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣的定義及

24、性質,了解對稱矩陣、反對稱矩陣及正交矩陣等的定義和性質2掌握矩陣的線性運算、乘法、轉置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.4.了解矩陣的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法5.了解分塊矩陣的概念,掌握分塊矩陣的運算法則三、向量考試內(nèi)容向量的概念向量的線性組合與線性表示向量組的線性相關與線性無關向量組的極大線性無關組 等價向量組向量組的秩向量組的秩與矩陣的秩之間的關系 向量的內(nèi)積 線性無關向量組的正交規(guī)范化方法考

25、試要求1了解向量的概念,掌握向量的加法和數(shù)乘運算法則2理解向量的線性組合與線性表示、向量組線性相關、線性無關等概念,掌握向量組線性相關、線性無關的有關性質及判別法3理解向量組的極大線性無關組的概念,會求向量組的極大線性無關組及秩4理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關系5了解內(nèi)積的概念掌握線性無關向量組正交規(guī)范化的施密特(Schmidt)方法四、線性方程組考試內(nèi)容 線性方程組的克拉默(Cramer)法則線性方程組有解和無解的判定齊次線性方程組的基礎解系和通解 非齊次線性方程組的解與相應的齊次線件方程組(導出組)的解之間的關系非齊次線性方程組的通解考試要求1.會用克拉默

26、法則解線性方程組2.掌握非齊次線性方程組有解和無解的判定方法3.理解齊次線性方程組的基礎解系的概念,掌握齊次線性方程組的基礎解系和通解的求法4.理解非齊次線性方程組解的結構及通解的概念5.掌握用初等行變換求解線性方程組的方法五、矩陣的特征值和特征向量考試內(nèi)容矩陣的特征值和特征向量的概念、性質相似矩陣的概念及性質矩陣可相似對角化的充分必要條件及相似對角矩陣實對稱矩陣的特征值和特征向量及相似對角矩陣考試要求1.理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質,掌握求矩陣特征值和特征向量的方法2.理解矩陣相似的概念,掌握相似矩陣的性質,了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角

27、矩陣的方法3.掌握實對稱矩陣的特征值和特征向量的性質六、二次型考試內(nèi)容二次型及其矩陣表示 合同變換與合同矩陣二次型的秩慣性定理二次型的標準形和規(guī)范形用正交變換和配方法化二次型為標準形二次型及其矩陣的正定性考試要求1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念2.了解二次型的秩的概念,了解二次型的標準形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標準形3.理解正定二次型正定矩陣的概念,并掌握其判別法概率論與數(shù)理統(tǒng)計一、隨機事件和概率考試內(nèi)容隨機事件與樣本空間事件的關系與運算完備事件組概率的概念概率的基本性質古典型概率幾何型概率條件概率概率的基本公式事件

28、的獨立性獨立重復試驗考試要求1了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件的關系及運算2理解概率、條件概率的概念,掌握概率的基本性質,會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式等3理解事件的獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法二、隨機變量及其分布考試內(nèi)容隨機變量隨機變量的分布函數(shù)的概念及其性質離散型隨機變量的概率分布連續(xù)型隨機變量的概率密度 常見隨機變量的分布 隨機變量函數(shù)的分布考試要求1理解隨機變量的概念,理解分布函數(shù)的概念及性質,會計算與隨機變量相聯(lián)系的事件的概率2理解離散型隨機變量及其概率分布的概念,掌握01分布、二項分布、幾何分布、超幾何分布、泊松(Poisson)分布及其應用3掌握泊松定理的結論和應用條件,會用泊松分布近似表示二項分布4理解連續(xù)型隨機變量及其概率密度的概念,掌握均勻分布、正態(tài)分布、指數(shù)分布及其應用,其中參數(shù)為的指數(shù)分布的概率密度為 5會求隨機變量函數(shù)的分布三、多維隨機變量及其分布考試內(nèi)容多維隨機變量及其分布函數(shù)二維離散型隨機變量的概率分布、邊緣分布和條件分布二維連續(xù)型隨機變量的概率密度、邊緣概率密度和條

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論