



下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、262 二次函數(shù)的圖象與性質(zhì)教學(xué)目標(biāo):1、會用描點法畫出二次函數(shù)的圖象,能通過圖象和關(guān)系式認(rèn)識二次函數(shù)的性質(zhì)2、會運用配方法確定二次函數(shù)圖象的頂點、開口方向和對稱軸重點:二次函數(shù)的圖象與性質(zhì)難點:二次函數(shù)的圖象與性質(zhì)本節(jié)知識點1會通過配方求出二次函數(shù)的最大或最小值;2在實際應(yīng)用中體會二次函數(shù)作為一種數(shù)學(xué)模型的作用,會利用二次函數(shù)的性質(zhì)求實際問題中的最大或最小值教學(xué)過程在實際生活中,我們常常會碰到一些帶有“最”字的問題,如問題:某商店將每件進(jìn)價為80元的某種商品按每件100元出售,一天可銷出約100件該店想通過降低售價、增加銷售量的辦法來提高利潤經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低1元,其銷售量
2、可增加約10件將這種商品的售價降低多少時,能使銷售利潤最大?在這個問題中,設(shè)每件商品降價x元,該商品每天的利潤為y元,則可得函數(shù)關(guān)系式為二次函數(shù)那么,此問題可歸結(jié)為:自變量x為何值時函數(shù)y取得最大值?你能解決嗎? 實踐與探索例1求下列函數(shù)的最大值或最小值(1); (2)分析 由于函數(shù)和的自變量x的取值范圍是全體實數(shù),所以只要確定它們的圖象有最高點或最低點,就可以確定函數(shù)有最大值或最小值解 (1)二次函數(shù)中的二次項系數(shù)20,因此拋物線有最低點,即函數(shù)有最小值因為=,所以當(dāng)時,函數(shù)有最小值是(2)二次函數(shù)中的二次項系數(shù)-10,因此拋物線有最高點,即函數(shù)有最大值因為=,所以當(dāng)時,函數(shù)有最大值是回顧與
3、反思 最大值或最小值的求法,第一步確定a的符號,a0有最小值,a0有最大值;第二步配方求頂點,頂點的縱坐標(biāo)即為對應(yīng)的最大值或最小值探索 試一試,當(dāng)25x35時,求二次函數(shù)的最大值或最小值例2某產(chǎn)品每件成本是120元,試銷階段每件產(chǎn)品的銷售價x(元)與產(chǎn)品的日銷售量y(件)之間關(guān)系如下表:x(元)130150165y(件)705035若日銷售量y是銷售價x的一次函數(shù),要獲得最大銷售利潤,每件產(chǎn)品的銷售價定為多少元?此時每日銷售利潤是多少?分析 日銷售利潤=日銷售量每件產(chǎn)品的利潤,因此主要是正確表示出這兩個量解 由表可知x+y=200,因此,所求的一次函數(shù)的關(guān)系式為設(shè)每日銷售利潤為s元,則有因為,
4、所以所以,當(dāng)每件產(chǎn)品的銷售價定為160元時,銷售利潤最大,最大銷售利潤為1600元回顧與反思 解決實際問題時,應(yīng)先分析問題中的數(shù)量關(guān)系,列出函數(shù)關(guān)系式,再研究所得的函數(shù),得出結(jié)果例3如圖2628,在RtABC中,C=90,BC=4,AC=8,點D在斜邊AB上,分別作DEAC,DFBC,垂足分別為E、F,得四邊形DECF,設(shè)DE=x,DF=y(1)用含y的代數(shù)式表示AE;(2)求y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;(3)設(shè)四邊形DECF的面積為S,求S與x之間的函數(shù)關(guān)系,并求出S的最大值解 (1)由題意可知,四邊形DECF為矩形,因此(2)由,得,即,所以,x的取值范圍是(3),所以,當(dāng)
5、x=2時,S有最大值8當(dāng)堂課內(nèi)練習(xí)1對于二次函數(shù),當(dāng)x= 時,y有最小值2已知二次函數(shù)有最小值 1,則a與b之間的大小關(guān)系是 ( )Aab Ba=b Cab D不能確定3某商場銷售一批襯衫,平均每天可售出20件,每件盈利40件,為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)過市場調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出2件(1)若商場平均每天要盈利1200元,每件襯衫應(yīng)降價多少元?(2)每件襯衫降價多少元時,商場平均每天盈利最多?本課課外作業(yè)A組1求下列函數(shù)的最大值或最小值(1); (2)2已知二次函數(shù)的最小值為1,求m的值,3心理學(xué)家發(fā)現(xiàn),學(xué)生對概念的接受
6、能力y與提出概念所用的時間x(單位:分)之間滿足函數(shù)關(guān)系:y值越大,表示接受能力越強(1)x在什么范圍內(nèi),學(xué)生的接受能力逐步增強?x在什么范圍內(nèi),學(xué)生的接受能力逐步降低?(2)第10分時,學(xué)生的接受能力是多少?(3)第幾分時,學(xué)生的接受能力最強?B組4不論自變量x取什么數(shù),二次函數(shù)的函數(shù)值總是正值,求m的取值范圍5如圖,有長為24m的籬笆,一面利用墻(墻的最大可用長度a為10m),圍成中間隔有一道籬笆的長方形花圃設(shè)花圃的寬AB為x m,面積為S m2(1)求S與x的函數(shù)關(guān)系式;(2)如果要圍成面積為45 m2的花圃,AB的長是多少米?(3)能圍成面積比45 m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由6如圖,矩形ABCD中,AB=3,BC=4,線段EF在對角線AC上,EGAD,F(xiàn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年春初中道德與法治七年級下冊教案設(shè)計 第三課 第1框 人須有自尊
- 2025至2030年中國陶瓷掛墻小便器行業(yè)發(fā)展研究報告001
- 2025至2030年中國鑄鐵蓋板行業(yè)發(fā)展研究報告
- 2025至2030年中國鉆石花錢夾行業(yè)發(fā)展研究報告
- 22文言文二則 書戴嵩畫牛 教學(xué)設(shè)計-2024-2025學(xué)年語文六年級上冊統(tǒng)編版
- 2025至2030年中國竹木機械行業(yè)發(fā)展研究報告001
- 2025至2030年中國穗株種子脫粒機行業(yè)發(fā)展研究報告001
- 采沙施工方案
- 旅游中的歷史
- 高中化學(xué) 第四章 非金屬及其化合物 4.2 富集在海水中的元素-氯教學(xué)設(shè)計4 新人教版必修1
- 企業(yè)主要負(fù)責(zé)人安全培訓(xùn)試題及答案 完整
- 全民國家安全教育日主題班會-童你一起共護(hù)國安課件
- 肯德基店面試試題及答案
- 2024年 全國職業(yè)院校技能大賽(中職組)嬰幼兒保育項目 規(guī)程
- 【北師大版】2024-2025學(xué)年七年級數(shù)學(xué)下冊教學(xué)工作計劃(含進(jìn)度表)
- 深信服下一代防火墻技術(shù)白皮書20231120
- 《國際貨運代理英語》課件-Customs Clearance 清關(guān)基本知識介紹
- 廣州市白云區(qū)2025年招考社區(qū)居委會專職人員高頻重點模擬試卷提升(共500題附帶答案詳解)
- 2025年遼寧省大連市高考語文一模試卷
- 2024年浙江省煙草專賣局(公司)管理類崗位招聘筆試真題
- 統(tǒng)編版語文七年級下第18課《井岡翠竹》公開課一等獎創(chuàng)新教學(xué)設(shè)計
評論
0/150
提交評論