




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁三亞航空旅游職業(yè)學(xué)院
《數(shù)據(jù)挖掘與數(shù)據(jù)倉庫》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的算法和模型需要考慮數(shù)據(jù)的特點(diǎn)和分析目的。假設(shè)我們有一個(gè)不平衡的數(shù)據(jù)集,其中一個(gè)類別占比極少,以下哪種方法可以處理這種不平衡問題?()A.過采樣B.欠采樣C.調(diào)整分類閾值D.以上都是2、數(shù)據(jù)分析中常用的統(tǒng)計(jì)方法有很多,其中描述性統(tǒng)計(jì)是一種基礎(chǔ)的方法。以下關(guān)于描述性統(tǒng)計(jì)的描述中,錯(cuò)誤的是?()A.描述性統(tǒng)計(jì)可以用來概括數(shù)據(jù)的集中趨勢(shì)、離散程度和分布形狀B.描述性統(tǒng)計(jì)可以通過計(jì)算均值、中位數(shù)、標(biāo)準(zhǔn)差等指標(biāo)來實(shí)現(xiàn)C.描述性統(tǒng)計(jì)只能對(duì)數(shù)值型數(shù)據(jù)進(jìn)行分析,對(duì)于分類型數(shù)據(jù)無法處理D.描述性統(tǒng)計(jì)是數(shù)據(jù)分析的第一步,為進(jìn)一步的分析提供基礎(chǔ)3、在數(shù)據(jù)分析中,異常值檢測(cè)對(duì)于發(fā)現(xiàn)數(shù)據(jù)中的異常情況非常重要。假設(shè)要檢測(cè)一個(gè)生產(chǎn)線上產(chǎn)品質(zhì)量數(shù)據(jù)中的異常值,這些數(shù)據(jù)受到多種因素的影響。以下哪種異常值檢測(cè)方法在這種工業(yè)生產(chǎn)數(shù)據(jù)中更能準(zhǔn)確地發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于聚類的方法4、在進(jìn)行數(shù)據(jù)分析時(shí),可能需要對(duì)多個(gè)數(shù)據(jù)集進(jìn)行合并和整合。假設(shè)你有來自不同部門的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)合并的注意事項(xiàng),哪一項(xiàng)是最關(guān)鍵的?()A.確保數(shù)據(jù)的格式和字段名稱一致,便于合并B.不考慮數(shù)據(jù)的重復(fù)和沖突,直接合并C.只合并部分重要的數(shù)據(jù)字段,忽略其他D.隨意選擇合并的順序和方式5、在處理多變量數(shù)據(jù)時(shí),降維技術(shù)可以幫助我們簡(jiǎn)化分析。假設(shè)我們有一個(gè)包含多個(gè)相關(guān)變量的數(shù)據(jù)集,以下哪種降維技術(shù)可以保留數(shù)據(jù)的局部結(jié)構(gòu)?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t分布隨機(jī)鄰域嵌入(t-SNE)D.局部線性嵌入(LLE)6、在數(shù)據(jù)倉庫和數(shù)據(jù)集市的建設(shè)中,需要考慮數(shù)據(jù)的整合和存儲(chǔ)。假設(shè)要為一個(gè)企業(yè)構(gòu)建數(shù)據(jù)存儲(chǔ)架構(gòu),以下關(guān)于數(shù)據(jù)倉庫和數(shù)據(jù)集市選擇的描述,正確的是:()A.只建立數(shù)據(jù)倉庫,不考慮數(shù)據(jù)集市,認(rèn)為數(shù)據(jù)倉庫能夠滿足所有分析需求B.盲目建立數(shù)據(jù)集市,不與數(shù)據(jù)倉庫進(jìn)行有效的集成和協(xié)調(diào)C.根據(jù)企業(yè)的規(guī)模、業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn),合理規(guī)劃數(shù)據(jù)倉庫和數(shù)據(jù)集市的架構(gòu),確保數(shù)據(jù)的一致性和可用性,并明確它們?cè)跀?shù)據(jù)分析中的角色和作用D.不考慮數(shù)據(jù)的更新和維護(hù),只關(guān)注初始的建設(shè)7、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示數(shù)據(jù)的層次結(jié)構(gòu),以下哪種圖表較為合適?()A.樹形圖B.旭日?qǐng)DC.和弦圖D.以上都是8、假設(shè)要分析消費(fèi)者對(duì)新產(chǎn)品的反饋意見,以下關(guān)于意見分析方法的描述,正確的是:()A.人工閱讀所有反饋意見,憑主觀判斷總結(jié)主要觀點(diǎn)B.利用自然語言處理技術(shù)對(duì)反饋進(jìn)行分類和情感分析C.只關(guān)注反饋中的負(fù)面意見,忽略正面意見D.對(duì)于模糊不清的反饋意見,直接忽略不計(jì)9、在數(shù)據(jù)分析中,以下哪種方法可以用于降低數(shù)據(jù)的維度同時(shí)保持?jǐn)?shù)據(jù)的局部結(jié)構(gòu)?()A.t-SNE算法B.MDS算法C.UMAP算法D.以上都是10、在進(jìn)行數(shù)據(jù)分析時(shí),若要檢驗(yàn)兩個(gè)總體的方差是否相等,應(yīng)使用哪種檢驗(yàn)方法?()A.F檢驗(yàn)B.t檢驗(yàn)C.卡方檢驗(yàn)D.秩和檢驗(yàn)11、在數(shù)據(jù)分析的過程中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問題。為了獲得高質(zhì)量的數(shù)據(jù)用于后續(xù)分析,以下哪種數(shù)據(jù)清洗方法是首先應(yīng)該考慮的?()A.直接刪除包含缺失值或錯(cuò)誤數(shù)據(jù)的記錄B.采用均值或中位數(shù)填充缺失值C.通過數(shù)據(jù)驗(yàn)證規(guī)則修正錯(cuò)誤數(shù)據(jù)D.利用機(jī)器學(xué)習(xí)算法預(yù)測(cè)缺失值12、在數(shù)據(jù)分析的模型評(píng)估中,假設(shè)建立了一個(gè)預(yù)測(cè)模型,需要評(píng)估其性能。除了準(zhǔn)確率,以下哪個(gè)評(píng)估指標(biāo)對(duì)于衡量模型的泛化能力可能更重要?()A.召回率,衡量模型找到正例的能力B.F1值,綜合考慮準(zhǔn)確率和召回率C.均方誤差,用于連續(xù)值的預(yù)測(cè)D.不關(guān)注評(píng)估指標(biāo),認(rèn)為模型是完美的13、在進(jìn)行數(shù)據(jù)分析時(shí),有時(shí)候需要對(duì)多個(gè)數(shù)據(jù)集進(jìn)行合并和連接。假設(shè)我們有兩個(gè)數(shù)據(jù)集,分別包含客戶的基本信息和購買記錄,以下哪種連接方式可以根據(jù)共同的客戶ID將兩個(gè)數(shù)據(jù)集合并?()A.內(nèi)連接B.外連接C.左連接D.以上都是14、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),需要找出不同變量之間的關(guān)系。假設(shè)要分析客戶購買行為與促銷活動(dòng)之間的關(guān)聯(lián),以下關(guān)于關(guān)聯(lián)分析方法的描述,正確的是:()A.只關(guān)注表面的關(guān)聯(lián),不深入分析內(nèi)在的因果關(guān)系B.不考慮數(shù)據(jù)的分布和異常值,直接進(jìn)行關(guān)聯(lián)分析C.運(yùn)用關(guān)聯(lián)規(guī)則挖掘、相關(guān)性分析等方法,同時(shí)考慮數(shù)據(jù)的特點(diǎn)和業(yè)務(wù)背景,挖掘有價(jià)值的關(guān)聯(lián)模式,并對(duì)結(jié)果進(jìn)行解釋和驗(yàn)證D.認(rèn)為關(guān)聯(lián)分析結(jié)果一定能直接用于制定營(yíng)銷策略,不進(jìn)行進(jìn)一步的評(píng)估和優(yōu)化15、在數(shù)據(jù)分析中的分類算法評(píng)估指標(biāo)中,以下關(guān)于準(zhǔn)確率和召回率的說法,不正確的是()A.準(zhǔn)確率是指分類正確的樣本數(shù)占總樣本數(shù)的比例B.召回率是指被正確分類的正例樣本數(shù)占實(shí)際正例樣本數(shù)的比例C.在某些情況下,準(zhǔn)確率和召回率可能存在矛盾,需要根據(jù)具體問題權(quán)衡二者的重要性D.為了綜合評(píng)估分類算法的性能,只需要關(guān)注準(zhǔn)確率和召回率其中一個(gè)指標(biāo)即可,另一個(gè)可以忽略二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的敏感性分析?請(qǐng)說明敏感性分析的目的和方法,并舉例說明其在決策中的應(yīng)用。2、(本題5分)簡(jiǎn)述強(qiáng)化學(xué)習(xí)的概念和應(yīng)用場(chǎng)景,說明其與監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)的區(qū)別,并舉例說明強(qiáng)化學(xué)習(xí)在數(shù)據(jù)分析中的應(yīng)用。3、(本題5分)簡(jiǎn)述數(shù)據(jù)挖掘中的推薦系統(tǒng),包括協(xié)同過濾、基于內(nèi)容的推薦等,說明其工作原理和應(yīng)用場(chǎng)景。4、(本題5分)在進(jìn)行數(shù)據(jù)分析時(shí),如何確定樣本量的大小?請(qǐng)闡述影響樣本量的因素和計(jì)算樣本量的常用方法,并舉例說明。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)教育行業(yè)正在積極探索利用數(shù)據(jù)分析提升教學(xué)效果。以某在線教育平臺(tái)為例,討論如何基于學(xué)生的學(xué)習(xí)行為數(shù)據(jù)進(jìn)行學(xué)習(xí)路徑推薦和個(gè)性化教學(xué),包括數(shù)據(jù)采集、學(xué)生畫像構(gòu)建、課程推薦算法,以及如何評(píng)估教學(xué)改進(jìn)的效果。2、(本題5分)在游戲行業(yè),玩家的游戲行為數(shù)據(jù)、付費(fèi)數(shù)據(jù)和游戲評(píng)價(jià)數(shù)據(jù)等大量存在。探討如何利用數(shù)據(jù)分析方法,比如用戶留存策略制定、游戲平衡性調(diào)整等,提升游戲的用戶體驗(yàn)和盈利能力,同時(shí)研究在數(shù)據(jù)作弊防范、游戲更新頻繁和玩家需求多樣化方面所面臨的困難及解決途徑。3、(本題5分)在金融市場(chǎng)的高頻交易中,數(shù)據(jù)分析和算法決策至關(guān)重要。以某高頻交易公司為例,探討如何運(yùn)用數(shù)據(jù)分析來捕捉市場(chǎng)瞬間機(jī)會(huì)、控制交易風(fēng)險(xiǎn)、優(yōu)化交易策略,以及如何應(yīng)對(duì)技術(shù)故障和市場(chǎng)波動(dòng)帶來的挑戰(zhàn)。4、(本題5分)電商品牌建設(shè)中,如何通過數(shù)據(jù)分析來塑造品牌形象、提升品牌知名度和忠誠(chéng)度?請(qǐng)論述品牌相關(guān)數(shù)據(jù)的收集和分析方法,以及基于數(shù)據(jù)的品牌營(yíng)銷策略制定。5、(本題5分)醫(yī)療行業(yè)的數(shù)據(jù)分析對(duì)于提高醫(yī)療質(zhì)量、優(yōu)化資源配置和疾病預(yù)防具有重要意義。請(qǐng)論述如何利用醫(yī)療數(shù)據(jù)進(jìn)行疾病預(yù)測(cè)、治療效果評(píng)估和醫(yī)療資源需求分析,包括數(shù)據(jù)來源、分析方法和面臨的技術(shù)難題,以及如何在保護(hù)患者隱私的前提下實(shí)現(xiàn)數(shù)據(jù)共享和合作。四、案例分析題(本大題共4個(gè)小題,共40分)1、(本題10分)某在線攝影器材租賃平臺(tái)掌握了租賃數(shù)據(jù)、器材損壞情況、用戶租賃周期等。優(yōu)化攝影器材租賃服務(wù)和維護(hù)管理。2、(本題10分)一家在線旅游平臺(tái)的跟團(tuán)游產(chǎn)品數(shù)據(jù)包含行程安排、價(jià)格、出發(fā)地、游客評(píng)價(jià)等。探討不同行程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CHTS 20041-2024樹脂基復(fù)合材料交通標(biāo)志底板及支撐件
- T/CGMA 033002-2020壓縮空氣站節(jié)能設(shè)計(jì)指南
- T/CEMIA 037-2023厚膜集成電路用銀鈀導(dǎo)體漿料規(guī)范
- T/CECS 10326-2023智慧社區(qū)大數(shù)據(jù)平臺(tái)技術(shù)要求
- T/CECS 10039-2019綠色建材評(píng)價(jià)墻面涂料
- T/CECA-G 0237-2023空氣源熱泵與燃?xì)庠O(shè)備耦合供熱系統(tǒng)技術(shù)規(guī)范
- T/CCMA 0085-2019市政與環(huán)衛(wèi)車輛作業(yè)標(biāo)志燈
- T/CCASC 3003-2023電石渣中乙炔含量測(cè)定氣相色譜法
- T/CCAS 033-2023油井水泥漿防氣竄試驗(yàn)方法
- T/CAPEB 00001.8-2022制藥裝備容器和管道第8部分:驗(yàn)證
- 2025年貴州省貴陽市衛(wèi)生健康系統(tǒng)事業(yè)單位招聘384人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- DB3307T 128-2023 共富工坊建設(shè)與星級(jí)評(píng)價(jià)規(guī)范
- 孩子心理成長(zhǎng)中家長(zhǎng)角色的科學(xué)定位
- 小學(xué)生反詐騙班會(huì)課件
- 康養(yǎng)休閑旅游服務(wù)基礎(chǔ)知識(shí)單選題及答案解析
- 解剖學(xué)公開課課件內(nèi)分泌
- 銀屑病臨床病例討論
- 【MOOC】工程經(jīng)濟(jì)學(xué)原理-東南大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 涉密人員審查備案登記表
- 高層建筑汽車吊吊裝作業(yè)方案
- 24秋新人教版地理七年級(jí)上冊(cè)大單元整體設(shè)計(jì)-第四章 天氣與氣候課件
評(píng)論
0/150
提交評(píng)論