遼寧經濟職業(yè)技術學院《平面廣告》2023-2024學年第二學期期末試卷_第1頁
遼寧經濟職業(yè)技術學院《平面廣告》2023-2024學年第二學期期末試卷_第2頁
遼寧經濟職業(yè)技術學院《平面廣告》2023-2024學年第二學期期末試卷_第3頁
遼寧經濟職業(yè)技術學院《平面廣告》2023-2024學年第二學期期末試卷_第4頁
遼寧經濟職業(yè)技術學院《平面廣告》2023-2024學年第二學期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共3頁遼寧經濟職業(yè)技術學院《平面廣告》

2023-2024學年第二學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺在人臉識別領域取得了顯著進展。假設要開發(fā)一個人臉識別系統(tǒng),以下關于人臉識別技術的描述,哪一項是不正確的?()A.可以通過提取人臉的幾何特征、紋理特征或深度學習特征進行識別B.人臉識別系統(tǒng)通常需要進行活體檢測,以防止使用照片或視頻等欺詐手段C.大規(guī)模的人臉數(shù)據(jù)集和深度學習模型的結合,大大提高了人臉識別的準確率D.人臉識別技術在任何光照條件、姿態(tài)變化和表情變化下都能準確識別,不受這些因素的影響2、在圖像配準任務中,需要將不同時間、不同視角或不同傳感器獲取的圖像進行對齊。假設我們要將一張衛(wèi)星圖像與一張航拍圖像進行配準,以下哪個因素對于配準的準確性影響最大?()A.圖像的分辨率差異B.圖像的旋轉和平移C.圖像的光照條件D.圖像中的噪聲3、計算機視覺中的圖像風格遷移是一項有趣的任務。假設要將一幅油畫的風格應用到一張照片上,以下關于模型訓練的要點,哪一項是不正確的?()A.學習油畫和照片的特征表示,找到風格和內容的分離方式B.只關注風格的遷移,不考慮照片原始內容的保留C.采用對抗訓練,使生成的圖像在風格和內容上達到平衡D.調整模型參數(shù),控制風格遷移的強度和效果4、當利用計算機視覺進行圖像去模糊任務,恢復清晰的圖像,以下哪種先驗知識或約束可能有助于解決這個問題?()A.自然圖像的梯度稀疏性B.圖像的低頻成分C.圖像的邊緣信息D.以上都是5、假設要開發(fā)一個能夠在低光照條件下清晰拍攝并處理圖像的計算機視覺系統(tǒng),以下哪種圖像增強方法可能有助于改善圖像質量?()A.直方圖均衡化B.伽馬校正C.暗通道先驗去霧D.以上都是6、當利用計算機視覺進行圖像分類任務,例如區(qū)分不同種類的動物圖片,為了提高模型的泛化能力和防止過擬合,以下哪種技術可能是有效的?()A.數(shù)據(jù)增強B.正則化C.模型融合D.以上都是7、在計算機視覺的圖像修復任務中,恢復圖像中缺失或損壞的部分。假設要修復一張老照片中缺失的部分,以下關于圖像修復方法的描述,正確的是:()A.基于紋理合成的圖像修復方法能夠完美恢復復雜的結構和細節(jié)B.深度學習中的自編碼器在圖像修復中無法學習到有效的特征表示C.圖像修復的結果不受缺失區(qū)域的大小和形狀的影響D.結合先驗知識和上下文信息的深度學習方法可以產生更合理和自然的修復效果8、在計算機視覺的場景理解任務中,假設要理解一個室內場景的布局和物體關系。以下關于利用深度學習模型的方法,哪一項是不太恰當?shù)??()A.使用卷積神經網絡(CNN)提取圖像特征B.運用循環(huán)神經網絡(RNN)處理場景的序列信息C.直接使用未經訓練的神經網絡,期望其自動學習場景理解D.結合CNN和RNN,構建端到端的場景理解模型9、在計算機視覺的視頻理解任務中,例如理解一段體育比賽視頻中的精彩瞬間和戰(zhàn)術,需要對視頻中的時空信息進行有效建模。以下哪種方法在時空建模方面可能具有優(yōu)勢?()A.3D卷積神經網絡B.長短時記憶網絡C.注意力機制D.以上都是10、圖像分割是將圖像分成不同的區(qū)域或對象。假設要對醫(yī)學影像中的腫瘤區(qū)域進行精確分割,以下關于圖像分割方法的描述,正確的是:()A.手動分割是最準確的方法,不需要借助計算機算法B.基于閾值的圖像分割方法能夠適用于所有類型的醫(yī)學影像分割問題C.深度學習中的全卷積網絡(FCN)及其變體在醫(yī)學圖像分割中具有很大的潛力D.圖像分割的結果只取決于所使用的分割算法,與圖像的預處理無關11、在計算機視覺中,目標檢測是一項重要任務。假設要在一張包含多種物體的圖像中準確檢測出汽車的位置和類別。以下關于目標檢測算法的描述,正確的是:()A.傳統(tǒng)的基于特征提取和分類器的方法在復雜場景下檢測效果優(yōu)于深度學習方法B.深度學習中的FasterR-CNN算法通過生成候選區(qū)域和分類回歸,能夠實現(xiàn)高精度的目標檢測C.目標檢測算法只關注物體的外觀特征,不考慮物體之間的空間關系D.所有的目標檢測算法對于小目標的檢測都具有同樣出色的性能12、計算機視覺中的光流估計是計算圖像中像素的運動信息。以下關于光流估計的敘述,不正確的是()A.光流估計可以用于視頻中的運動分析、目標跟蹤和動作識別等任務B.基于深度學習的光流估計方法在精度和速度上都有了很大的提升C.光流估計只對勻速運動的物體有效,對于復雜的非勻速運動估計不準確D.光流估計的結果可以為后續(xù)的計算機視覺任務提供重要的運動線索13、計算機視覺中的醫(yī)學圖像分析中,假設要對腫瘤進行檢測和分割。以下關于醫(yī)學圖像分析方法的描述,正確的是:()A.由于醫(yī)學圖像的特殊性,傳統(tǒng)的計算機視覺方法無法應用于醫(yī)學圖像分析B.深度學習方法在醫(yī)學圖像分析中能夠準確檢測腫瘤,但對小腫瘤容易漏檢C.多模態(tài)醫(yī)學圖像融合可以提供更豐富的信息,但融合算法復雜,效果不穩(wěn)定D.醫(yī)學圖像分析的結果不需要經過醫(yī)生的審核和確認,可以直接用于診斷14、計算機視覺在體育賽事分析中的應用可以提供更多的數(shù)據(jù)和見解。假設要分析一場足球比賽中球員的跑動軌跡和動作。以下關于計算機視覺在體育賽事中的描述,哪一項是不準確的?()A.可以通過對視頻的分析,自動跟蹤球員的位置和運動軌跡B.能夠對球員的動作進行分類,如傳球、射門和防守C.計算機視覺在體育賽事分析中的結果可以直接作為裁判的判罰依據(jù),無需人工復查D.可以結合多攝像頭的信息,獲取更全面和準確的比賽數(shù)據(jù)15、計算機視覺中的圖像配準是將不同時間、不同視角或不同傳感器獲取的圖像進行對齊。假設要將兩張拍攝角度不同的衛(wèi)星圖像進行配準,以下關于圖像配準方法的描述,哪一項是不正確的?()A.基于特征的圖像配準方法通過提取圖像中的顯著特征,并進行匹配來實現(xiàn)配準B.基于灰度的圖像配準方法直接比較圖像的灰度值,計算相似性度量來完成配準C.圖像配準的精度主要取決于特征提取的準確性和匹配算法的性能D.圖像配準總是能夠完美地將兩張圖像對齊,不存在任何誤差16、計算機視覺中的語義分割任務旨在為圖像中的每個像素分配一個類別標簽。假設要對醫(yī)學圖像中的病變區(qū)域進行精確分割,以下哪種技術可能對提高分割精度有較大幫助?()A.使用更深的卷積神經網絡架構B.引入多尺度特征融合C.增加訓練數(shù)據(jù)中的噪聲D.減少網絡中的參數(shù)數(shù)量17、在計算機視覺中,圖像去霧是提高有霧圖像質量的技術。以下關于圖像去霧的描述,不準確的是()A.圖像去霧可以基于物理模型或深度學習方法來實現(xiàn)B.深度學習方法在圖像去霧中能夠有效地恢復圖像的細節(jié)和顏色C.圖像去霧只對輕度有霧的圖像有效,對于濃霧圖像效果不佳D.圖像去霧可以提高圖像的清晰度和可視性,有助于后續(xù)的處理和分析18、在計算機視覺的場景理解任務中,需要對整個圖像場景進行分析和解釋。假設我們有一張城市街道的圖像,要理解其中的道路、建筑物、車輛和行人之間的關系。以下哪種方法能夠提供更全面和深入的場景理解?()A.基于對象檢測和分類的方法B.基于語義分割和圖模型的方法C.基于深度學習的場景解析網絡D.基于特征匹配和聚類的方法19、計算機視覺中的工業(yè)檢測任務需要檢測產品的缺陷和瑕疵。假設要在生產線上對一批電子產品的外觀進行檢測,要求快速準確地發(fā)現(xiàn)微小的缺陷。以下哪種工業(yè)檢測方法在處理這種高精度要求的任務時最為適用?()A.機器視覺檢測B.人工目檢C.抽樣檢測D.基于統(tǒng)計的檢測20、在計算機視覺的發(fā)展中,模型的可解釋性是一個重要的研究方向。以下關于模型可解釋性的描述,不準確的是()A.模型可解釋性旨在理解模型是如何做出決策和生成輸出的B.可解釋性對于建立用戶對模型的信任和確保模型的公正性具有重要意義C.一些可視化技術,如特征圖可視化和類激活映射,可以幫助解釋模型的決策過程D.目前的計算機視覺模型都具有良好的可解釋性,能夠清晰地解釋其決策依據(jù)21、假設要構建一個能夠對服裝進行款式和顏色識別的計算機視覺系統(tǒng),用于時尚推薦和庫存管理。在處理服裝圖像時,由于服裝的款式和顏色變化多樣,以下哪種特征表示方法可能更適合?()A.手工設計的特征B.基于深度學習的自動特征C.顏色直方圖D.以上都是22、在計算機視覺的姿態(tài)估計任務中,需要確定物體在三維空間中的方向和位置。假設要估計一個機器人手臂的姿態(tài),以實現(xiàn)精確的控制和操作。以下哪種姿態(tài)估計方法在處理這種機械結構時準確性更高?()A.基于模型的姿態(tài)估計B.基于深度學習的姿態(tài)估計C.基于視覺慣性里程計的姿態(tài)估計D.基于幾何約束的姿態(tài)估計23、圖像分割是將圖像分成不同的區(qū)域,每個區(qū)域具有相似的特征。假設要對醫(yī)學圖像進行器官分割,以下關于圖像分割方法的描述,哪一項是不正確的?()A.基于閾值的分割方法簡單直接,但對于復雜圖像效果往往不佳B.基于邊緣檢測的分割方法通過尋找圖像中的邊緣來劃分區(qū)域,但容易受到噪聲影響C.基于深度學習的語義分割方法能夠實現(xiàn)像素級別的分類,效果較好,但計算量較大D.圖像分割只適用于灰度圖像,對于彩色圖像無法進行有效的分割24、在計算機視覺中,圖像檢索是根據(jù)用戶的需求從圖像數(shù)據(jù)庫中查找相關的圖像。以下關于圖像檢索的說法,錯誤的是()A.圖像檢索可以基于圖像的內容,如顏色、形狀和紋理等特征B.深度學習方法可以學習到更具語義的圖像表示,提高圖像檢索的準確性C.圖像檢索在電子商務、數(shù)字圖書館和圖像搜索引擎等領域有廣泛的應用D.圖像檢索的性能只取決于圖像特征的提取,與數(shù)據(jù)庫的組織和索引無關25、在計算機視覺的場景理解任務中,需要理解整個圖像的語義信息。假設要分析一張城市街道的圖像中包含的物體和它們之間的關系,以下關于場景理解方法的描述,正確的是:()A.單獨對圖像中的每個物體進行識別和分類就能實現(xiàn)場景理解B.忽略圖像中的上下文信息和空間布局對場景理解沒有影響C.利用深度學習中的語義分割和圖模型可以更好地理解場景的結構和語義關系D.場景理解只適用于簡單的室內場景,對于復雜的戶外場景無法處理26、計算機視覺是一門研究如何讓計算機從圖像或視頻中獲取信息和理解內容的學科。在計算機視覺的應用中,目標檢測是一項重要任務。以下關于目標檢測的描述,不準確的是()A.目標檢測能夠準確識別圖像或視頻中特定類別的物體,并確定其位置和大小B.深度學習技術的發(fā)展極大地提高了目標檢測的準確性和效率C.目標檢測只適用于靜態(tài)圖像,對于動態(tài)視頻的處理效果不佳D.目標檢測在自動駕駛、安防監(jiān)控和工業(yè)檢測等領域有著廣泛的應用27、在計算機視覺的圖像增強任務中,旨在改善圖像的質量。假設一張低光照條件下拍攝的照片需要增強。以下關于圖像增強方法的描述,哪一項是錯誤的?()A.可以通過直方圖均衡化方法增強圖像的對比度B.基于濾波的方法能夠去除圖像中的噪聲,同時增強細節(jié)C.圖像增強可以無限制地提高圖像的質量,不存在過度增強的問題D.深度學習中的生成對抗網絡(GAN)也可以用于圖像增強28、計算機視覺中的動作識別是對視頻中人物或物體的動作進行分類和理解。假設要識別一段舞蹈視頻中的各種舞蹈動作,同時要考慮動作的速度、幅度和風格的變化。以下哪種動作識別方法在處理這種復雜的動作模式時表現(xiàn)更好?()A.基于手工特征的動作識別B.基于時空興趣點的動作識別C.基于深度學習的時空卷積網絡D.基于隱馬爾可夫模型的動作識別29、在一個基于計算機視覺的智能交通監(jiān)控系統(tǒng)中,需要對車輛的類型、速度和行駛軌跡進行分析。以下哪種技術在車輛分析方面可能發(fā)揮關鍵作用?()A.目標檢測和跟蹤B.車牌識別C.軌跡預測D.以上都是30、計算機視覺在安防監(jiān)控領域有重要應用。假設要通過攝像頭監(jiān)控一個公共場所,以下關于計算機視覺在安防監(jiān)控中的應用描述,哪一項是不正確的?()A.可以實時檢測異常行為,如人群聚集、奔跑等B.能夠對人員進行身份識別和認證C.計算機視覺系統(tǒng)可以獨立完成所有的安防監(jiān)控任務,不需要人工干預D.與其他安防設備和系統(tǒng)集成,提高整體的安全性和防范能力二、應用題(本大題共5個小題,共25分)1、(本題5分)利用圖像分割技術,從心電圖中分割出異常波形。2、(本題5分)運用圖像識別算法,對不同類型的鞋子品牌和款式進行分類和識別。3、(本題5分)基于計算機視覺的手勢識別系統(tǒng),實現(xiàn)簡單的手勢控制操作。4、(本題5分)通過計算機視覺,對不同類型的麥稈畫作品進行分類。5、(本題5分)基于深度學習的圖像生成技術,生成具有特定主題的繪畫作品。三、簡答題(本大題共5個

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論