




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
不等式、推理與證明第七章第2講二元一次不等式(組)與簡單的線性規(guī)劃問題【考綱導(dǎo)學(xué)】1.會從實(shí)際情境中抽象出二元一次不等式(組).2.了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式(組).3.會從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.欄目導(dǎo)航01課前基礎(chǔ)診斷03課后感悟提升02課堂考點(diǎn)突破04配套訓(xùn)練課前基礎(chǔ)診斷11.二元一次不等式表示的平面區(qū)域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐標(biāo)系中表示直線Ax+By+C=0某一側(cè)所有點(diǎn)組成的__________.我們把直線畫成虛線以表示區(qū)域________邊界直線.當(dāng)我們在坐標(biāo)系中畫不等式Ax+By+C≥0所表示的平面區(qū)域時(shí),此區(qū)域應(yīng)______邊界直線,則把邊界直線畫成___________.(2)由于對直線Ax+By+C=0同一側(cè)的所有點(diǎn)(x,y),把它的坐標(biāo)(x,y)代入Ax+By+C,所得的符號都______,所以只需在此直線的同一側(cè)取一個(gè)特殊點(diǎn)(x0,y0)作為測試點(diǎn),由Ax0+By0+C的______即可判斷Ax+By+C>0表示的是直線Ax+By+C=0哪一側(cè)的平面區(qū)域.平面區(qū)域不包括包括實(shí)線相同符號2.線性規(guī)劃相關(guān)概念一次最大值最小值一次線性約束條件可行解最大值最小值最大值最小值1.在不等式x+2y-1>0表示的平面區(qū)域內(nèi)的點(diǎn)是(
)A.(1,-1) B.(0,1)C.(1,0) D.(-2,0)【答案】B3.不等式2x-3y+6>0表示的平面區(qū)域在直線2x-3y+6=0的(
)A.左上方 B.左下方C.右上方 D.右下方【答案】D5.(教材習(xí)題改編)投資生產(chǎn)A產(chǎn)品時(shí),每生產(chǎn)100t需要資金200萬元,需場地200m2;投資生產(chǎn)B產(chǎn)品時(shí),每生產(chǎn)100t需要資金300萬元,需場地100m2.現(xiàn)某單位可使用資金不超過1400萬元,場地不超過900m2,則上述要求可用不等式組表示為__________(用x,y分別表示生產(chǎn)A,B產(chǎn)品的量,x和y的單位是百噸).×√√×√課堂考點(diǎn)突破2二元一次不等式(組)表示的平面區(qū)域【答案】D【規(guī)律方法】二元一次不等式(組)表示平面區(qū)域的判斷方法:直線定界,測試點(diǎn)定域,注意不等式中等號能否取到,無等號時(shí)直線畫成虛線,有等號時(shí)直線畫成實(shí)線.測試點(diǎn)可以選一個(gè),也可以選多個(gè),若直線不過原點(diǎn),則常選取原點(diǎn)為測試點(diǎn).【跟蹤訓(xùn)練】1.下列各點(diǎn)中,位于不等式(x+2y+1)(x-y+4)<0表示的平面區(qū)域內(nèi)的是(
)A.(0,0)
B.(-2,0)
C.(-1,0)
D.(2,3)【答案】B【解析】A,當(dāng)x=0,y=0時(shí),1×4<0不成立;B,當(dāng)x=-2,y=0時(shí),(-2+1)×(-2+4)=-2<0成立;C,當(dāng)x=-1,y=0時(shí),(-1+1)×(-1+4)=0<0不成立;D,當(dāng)x=2,y=3時(shí),(2+6+1)×(2-3+4)=27<0不成立.故選B.求目標(biāo)函數(shù)的最值【考向分析】線性規(guī)劃問題是高考的重點(diǎn),而線性規(guī)劃問題具有代數(shù)和幾何的雙重形式,多與函數(shù)、平面向量、數(shù)列、三角、概率、解析幾何等問題交叉滲透,自然地融合在一起,使數(shù)學(xué)問題的解答變得更加新穎別致.常見的考向:(1)求線性目標(biāo)函數(shù)的最值;(2)求非線性目標(biāo)函數(shù)的最值;(3)線性規(guī)劃中的參數(shù)問題.【答案】C【答案】(1)B
(2)B【答案】B【解析】作出如圖所示平面區(qū)域,A(1,2),B(1,-1),C(3,0),因?yàn)槟繕?biāo)函數(shù)z=kx-y的最小值為0,所以目標(biāo)函數(shù)z=kx-y的最小值可能在A或B時(shí)取得.①若在A上取得,則k-2=0,則k=2,此時(shí),z=2x-y在C點(diǎn)有最大值,z=2×3-0=6,成立;②若在B上取得,則k+1=0,則k=-1,此時(shí),z=-x-y,在B點(diǎn)取得的應(yīng)是最大值,故不成立.故選B.【規(guī)律方法】1.求目標(biāo)函數(shù)的最值三步驟.(1)作圖:畫出約束條件所確定的平面區(qū)域和目標(biāo)函數(shù)所表示的平行直線系中過原點(diǎn)的那一條直線.(2)平移:將l平行移動,以確定最優(yōu)解的對應(yīng)點(diǎn)的位置.(3)求值:解方程組求出對應(yīng)點(diǎn)坐標(biāo)(即最優(yōu)解),代入目標(biāo)函數(shù),即可求出最值.2.常見的三類目標(biāo)函數(shù).(1)截距型:形如z=ax+by.線性規(guī)劃的實(shí)際應(yīng)用【規(guī)律方法】解線性規(guī)劃應(yīng)用問題的一般步驟:(1)分析題意,設(shè)出未知量;(2)列出線性約束條件和目標(biāo)函數(shù);(3)作出可行域并利用數(shù)形結(jié)合求解;(4)作答.【跟蹤訓(xùn)練】2.制訂投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個(gè)項(xiàng)目,根據(jù)預(yù)測,甲、乙項(xiàng)目可能的最大盈利率分別為100%和50%,可能的最大虧損率分別為30%和10%.若投資人計(jì)劃投資金額不超過10萬元,要求確??赡艿馁Y金虧損不超過1.8萬元,問投資人對甲、乙兩個(gè)項(xiàng)目各投資多少萬元,才能使可能的盈利最大?課后感悟提升33.(2017年北京)某學(xué)習(xí)小組由學(xué)生和教師組成,人員構(gòu)成同時(shí)滿足以下三個(gè)條件:①男學(xué)生人數(shù)多于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 林木遺傳育種與經(jīng)濟(jì)效益分析考核試卷
- 數(shù)字智慧方案5486丨如何高效構(gòu)建智慧零售系統(tǒng)
- 肉類產(chǎn)品安全追溯體系構(gòu)建與實(shí)施考核試卷
- 聚丙烯酸甲酯纖維染色考核試卷
- 建筑幕垟安全施工方案
- 《銷售渠道策略》課件
- 2025年二級造價(jià)工程師之建設(shè)工程造價(jià)管理基礎(chǔ)知識能力測試試卷B卷附答案
- 2025年教師資格之小學(xué)教育學(xué)教育心理學(xué)強(qiáng)化訓(xùn)練試卷B卷附答案
- 《空調(diào)技術(shù)與設(shè)備》課件
- 雙減初中物理教學(xué)設(shè)計(jì)
- GB/T 15108-2017原糖
- GB/T 15089-2001機(jī)動車輛及掛車分類
- 新疆理工學(xué)院面向社會公開招聘27名行政教輔人員【共500題含答案解析】模擬檢測試卷
- 初中語文人教八年級上冊《作文訓(xùn)練之細(xì)節(jié)描寫》PPT
- 增值稅轉(zhuǎn)型改革及增值稅條例課件
- 2023屆高考語文復(fù)習(xí):西藏男孩丁真 課件
- 挖掘機(jī)司機(jī)技能理論考試題庫大全(600題版)
- 穿支動脈梗死的病因和機(jī)制課件
- 吡格列酮聯(lián)合二甲雙胍治療2型糖尿病的循證證據(jù)
- 布草間管理制度(3篇)
- 高校電子課件:產(chǎn)業(yè)經(jīng)濟(jì)學(xué)(第五版)
評論
0/150
提交評論