江西農(nóng)業(yè)大學(xué)《數(shù)字平面設(shè)計(jì)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
江西農(nóng)業(yè)大學(xué)《數(shù)字平面設(shè)計(jì)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
江西農(nóng)業(yè)大學(xué)《數(shù)字平面設(shè)計(jì)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
江西農(nóng)業(yè)大學(xué)《數(shù)字平面設(shè)計(jì)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁江西農(nóng)業(yè)大學(xué)

《數(shù)字平面設(shè)計(jì)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺的圖像風(fēng)格遷移任務(wù)中,將一張圖像的風(fēng)格應(yīng)用到另一張圖像上。假設(shè)要將一幅油畫的風(fēng)格遷移到一張照片上,以下關(guān)于圖像風(fēng)格遷移方法的描述,正確的是:()A.基于手工特征提取和風(fēng)格轉(zhuǎn)換的方法能夠?qū)崿F(xiàn)自然逼真的風(fēng)格遷移B.深度學(xué)習(xí)中的生成對(duì)抗網(wǎng)絡(luò)(GAN)在風(fēng)格遷移中無法生成多樣化的風(fēng)格效果C.圖像的內(nèi)容和風(fēng)格可以完全獨(dú)立地進(jìn)行處理,互不影響D.考慮圖像的局部和全局特征以及語義信息能夠提升風(fēng)格遷移的質(zhì)量2、計(jì)算機(jī)視覺中的行人檢測(cè)是智能監(jiān)控系統(tǒng)中的重要任務(wù)。假設(shè)要在一個(gè)擁擠的公共場(chǎng)所中準(zhǔn)確檢測(cè)出行人,同時(shí)要排除其他類似物體的干擾。以下哪種行人檢測(cè)方法在這種復(fù)雜環(huán)境下具有更高的檢測(cè)率和較低的誤檢率?()A.基于HOG特征的行人檢測(cè)B.基于深度學(xué)習(xí)的行人檢測(cè)C.基于運(yùn)動(dòng)信息的行人檢測(cè)D.基于形狀模板的行人檢測(cè)3、在計(jì)算機(jī)視覺的場(chǎng)景理解任務(wù)中,假設(shè)要理解一個(gè)室內(nèi)場(chǎng)景的布局和物體關(guān)系。以下關(guān)于利用深度學(xué)習(xí)模型的方法,哪一項(xiàng)是不太恰當(dāng)?shù)模浚ǎ〢.使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)提取圖像特征B.運(yùn)用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)處理場(chǎng)景的序列信息C.直接使用未經(jīng)訓(xùn)練的神經(jīng)網(wǎng)絡(luò),期望其自動(dòng)學(xué)習(xí)場(chǎng)景理解D.結(jié)合CNN和RNN,構(gòu)建端到端的場(chǎng)景理解模型4、計(jì)算機(jī)視覺中的行人重識(shí)別任務(wù)是在不同攝像頭中識(shí)別出特定的行人。假設(shè)要在一個(gè)大型火車站中尋找一個(gè)走失的兒童。以下關(guān)于行人重識(shí)別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以利用行人的服裝顏色、款式和攜帶物品等特征進(jìn)行重識(shí)別B.深度學(xué)習(xí)中的度量學(xué)習(xí)方法可以學(xué)習(xí)行人的特征表示,提高重識(shí)別的準(zhǔn)確率C.行人重識(shí)別不受行人姿態(tài)變化和攝像頭視角差異的影響D.可以通過構(gòu)建大規(guī)模的行人數(shù)據(jù)集進(jìn)行訓(xùn)練,提升模型的泛化能力5、在計(jì)算機(jī)視覺的圖像分割任務(wù)中,假設(shè)要對(duì)細(xì)胞圖像進(jìn)行精細(xì)分割。以下關(guān)于模型選擇的考慮因素,哪一項(xiàng)是不準(zhǔn)確的?()A.模型對(duì)細(xì)胞邊界的捕捉能力B.模型在小樣本數(shù)據(jù)上的泛化能力C.模型的訓(xùn)練時(shí)間和計(jì)算資源需求D.模型的知名度和在學(xué)術(shù)圈的引用次數(shù)6、在計(jì)算機(jī)視覺的圖像配準(zhǔn)任務(wù)中,假設(shè)要將兩張拍攝角度和時(shí)間不同的同一物體的圖像進(jìn)行精確對(duì)齊。這兩張圖像可能存在縮放、旋轉(zhuǎn)和平移等差異。以下哪種配準(zhǔn)方法可能更適合處理這種情況?()A.基于特征點(diǎn)匹配的方法,如SIFT特征B.直接將兩張圖像疊加,不進(jìn)行任何配準(zhǔn)操作C.基于圖像灰度值的配準(zhǔn)方法,計(jì)算灰度差異D.隨機(jī)選擇圖像中的點(diǎn)進(jìn)行匹配7、計(jì)算機(jī)視覺中的動(dòng)作識(shí)別是一個(gè)具有挑戰(zhàn)性的任務(wù)。假設(shè)要識(shí)別一段體育比賽視頻中的運(yùn)動(dòng)員動(dòng)作,以下關(guān)于特征選擇的方法,哪一項(xiàng)是不太可行的?()A.提取運(yùn)動(dòng)員的身體輪廓和關(guān)節(jié)位置作為特征B.僅使用視頻的音頻信息來判斷運(yùn)動(dòng)員的動(dòng)作C.計(jì)算視頻幀之間的光流變化作為動(dòng)作特征D.結(jié)合空間和時(shí)間維度的特征來描述動(dòng)作8、圖像分類是計(jì)算機(jī)視覺的基本任務(wù)之一。假設(shè)要對(duì)大量的動(dòng)物圖像進(jìn)行分類,將其分為貓、狗、兔子等類別。在進(jìn)行圖像分類時(shí),以下關(guān)于特征提取的描述,正確的是:()A.手工設(shè)計(jì)的特征,如顏色直方圖、紋理特征等,總是比自動(dòng)學(xué)習(xí)的特征更有效B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動(dòng)學(xué)習(xí)到具有判別性的圖像特征,無需人工干預(yù)C.特征提取的好壞對(duì)圖像分類的結(jié)果影響不大,主要取決于分類器的性能D.為了提高分類準(zhǔn)確率,應(yīng)該盡可能多地提取圖像的各種特征,而不考慮特征的冗余性9、計(jì)算機(jī)視覺中的目標(biāo)重識(shí)別任務(wù)旨在在不同的攝像頭視角中識(shí)別出同一目標(biāo)。假設(shè)要在一個(gè)大型商場(chǎng)的多個(gè)攝像頭中尋找一個(gè)特定的人物。以下關(guān)于目標(biāo)重識(shí)別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過提取目標(biāo)的特征,如顏色、形狀和紋理,來進(jìn)行重識(shí)別B.深度學(xué)習(xí)中的特征學(xué)習(xí)方法能夠提高目標(biāo)重識(shí)別的準(zhǔn)確率C.目標(biāo)重識(shí)別不受攝像頭視角、光照和人物姿態(tài)變化的影響D.可以通過建立目標(biāo)的特征庫,快速在多個(gè)攝像頭中進(jìn)行匹配和搜索10、計(jì)算機(jī)視覺中的行人重識(shí)別是在不同攝像頭拍攝的圖像或視頻中識(shí)別出特定的行人。以下關(guān)于行人重識(shí)別的敘述,不正確的是()A.行人重識(shí)別需要提取具有判別性的行人特征,克服視角、光照和姿態(tài)的變化B.深度學(xué)習(xí)方法在行人重識(shí)別任務(wù)中取得了顯著的性能提升C.行人重識(shí)別在智能安防、視頻監(jiān)控和人員追蹤等領(lǐng)域有重要的應(yīng)用D.行人重識(shí)別技術(shù)已經(jīng)能夠在大規(guī)模數(shù)據(jù)集上達(dá)到100%的準(zhǔn)確率11、計(jì)算機(jī)視覺中的圖像去噪旨在去除圖像中的噪聲,同時(shí)保留圖像的細(xì)節(jié)和結(jié)構(gòu)。假設(shè)我們有一張受到嚴(yán)重噪聲污染的醫(yī)學(xué)圖像,以下哪種圖像去噪方法能夠在去除噪聲的同時(shí),最大程度地保留圖像的邊緣和紋理信息?()A.均值濾波B.中值濾波C.高斯濾波D.基于小波變換的去噪方法12、計(jì)算機(jī)視覺在醫(yī)療手術(shù)中的應(yīng)用可以為醫(yī)生提供輔助和支持。假設(shè)在一個(gè)微創(chuàng)手術(shù)中,計(jì)算機(jī)視覺用于引導(dǎo)手術(shù)器械。以下關(guān)于計(jì)算機(jī)視覺在醫(yī)療手術(shù)中的描述,哪一項(xiàng)是不正確的?()A.可以通過實(shí)時(shí)圖像分析,為醫(yī)生提供器械與組織的相對(duì)位置和姿態(tài)信息B.能夠?qū)κ中g(shù)區(qū)域進(jìn)行精準(zhǔn)的分割和標(biāo)注,幫助醫(yī)生識(shí)別關(guān)鍵結(jié)構(gòu)C.計(jì)算機(jī)視覺在醫(yī)療手術(shù)中的應(yīng)用已經(jīng)非常成熟,不存在任何風(fēng)險(xiǎn)和誤差D.可以與機(jī)器人手術(shù)系統(tǒng)結(jié)合,實(shí)現(xiàn)更精確和穩(wěn)定的手術(shù)操作13、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,假設(shè)要在一段視頻中持續(xù)跟蹤一個(gè)移動(dòng)的物體,例如跟蹤一只飛行的鳥。物體可能會(huì)被其他物體遮擋,并且外觀可能會(huì)發(fā)生變化。以下哪種目標(biāo)跟蹤方法在這種復(fù)雜情況下更有可能成功?()A.基于卡爾曼濾波的跟蹤方法,預(yù)測(cè)物體的位置和速度B.基于深度學(xué)習(xí)的Siamese網(wǎng)絡(luò)跟蹤方法C.只在視頻的起始幀確定目標(biāo)位置,后續(xù)幀不再跟蹤D.隨機(jī)選擇視頻中的區(qū)域作為跟蹤目標(biāo)14、計(jì)算機(jī)視覺中的顯著性檢測(cè)旨在找出圖像中引人注目的區(qū)域。假設(shè)要在一張復(fù)雜的自然風(fēng)景圖像中檢測(cè)顯著性區(qū)域,以下關(guān)于顯著性檢測(cè)方法的描述,哪一項(xiàng)是不正確的?()A.基于對(duì)比度的方法通過計(jì)算圖像區(qū)域與周圍區(qū)域的差異來確定顯著性B.基于頻域分析的方法可以從圖像的頻譜中提取顯著性信息C.深度學(xué)習(xí)方法能夠?qū)W習(xí)圖像的全局和局部特征,實(shí)現(xiàn)更準(zhǔn)確的顯著性檢測(cè)D.顯著性檢測(cè)的結(jié)果總是與人類的視覺注意力機(jī)制完全一致,沒有偏差15、計(jì)算機(jī)視覺中的特征提取是非常關(guān)鍵的步驟。假設(shè)要從一組圖像中提取具有代表性的特征,以下關(guān)于特征提取方法的描述,正確的是:()A.手工設(shè)計(jì)的特征,如SIFT和HOG,在任何情況下都比深度學(xué)習(xí)自動(dòng)學(xué)習(xí)的特征更有效B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動(dòng)學(xué)習(xí)到圖像的多層次特征,具有很強(qiáng)的表達(dá)能力C.特征提取的結(jié)果對(duì)后續(xù)的圖像分類和目標(biāo)檢測(cè)任務(wù)沒有影響D.特征提取只需要考慮圖像的局部信息,全局信息不重要16、在計(jì)算機(jī)視覺的圖像增強(qiáng)任務(wù)中,假設(shè)要提高一張低光照?qǐng)D像的質(zhì)量。以下關(guān)于圖像增強(qiáng)方法的描述,正確的是:()A.直方圖均衡化能夠均勻分布圖像的灰度級(jí),但可能會(huì)導(dǎo)致細(xì)節(jié)丟失B.基于濾波的方法可以有效地去除噪聲,但同時(shí)也會(huì)模糊圖像的邊緣C.伽馬校正只適用于校正過亮的圖像,對(duì)于低光照?qǐng)D像效果不佳D.所有的圖像增強(qiáng)方法都能夠在不引入任何失真的情況下提高圖像質(zhì)量17、計(jì)算機(jī)視覺中的光流計(jì)算用于估計(jì)圖像中像素的運(yùn)動(dòng)。假設(shè)要在一個(gè)動(dòng)態(tài)場(chǎng)景中準(zhǔn)確計(jì)算光流,以下哪種情況可能導(dǎo)致較大的誤差?()A.物體的快速運(yùn)動(dòng)B.光照的劇烈變化C.圖像的低分辨率D.以上都有可能18、假設(shè)要開發(fā)一個(gè)能夠在低光照條件下清晰拍攝并處理圖像的計(jì)算機(jī)視覺系統(tǒng),以下哪種圖像增強(qiáng)方法可能有助于改善圖像質(zhì)量?()A.直方圖均衡化B.伽馬校正C.暗通道先驗(yàn)去霧D.以上都是19、在計(jì)算機(jī)視覺的研究中,數(shù)據(jù)集的質(zhì)量和規(guī)模對(duì)模型的訓(xùn)練和性能評(píng)估至關(guān)重要。以下關(guān)于數(shù)據(jù)集的描述,不準(zhǔn)確的是()A.大規(guī)模、多樣化和標(biāo)注準(zhǔn)確的數(shù)據(jù)集有助于訓(xùn)練出泛化能力強(qiáng)的模型B.一些公開的數(shù)據(jù)集如ImageNet、COCO等為計(jì)算機(jī)視覺研究提供了重要的基準(zhǔn)C.數(shù)據(jù)集的構(gòu)建需要耗費(fèi)大量的時(shí)間和人力,但可以通過數(shù)據(jù)增強(qiáng)技術(shù)來減少對(duì)原始數(shù)據(jù)的需求D.數(shù)據(jù)集一旦構(gòu)建完成,就不需要再進(jìn)行更新和擴(kuò)展,能夠一直滿足研究的需求20、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,持續(xù)跟蹤視頻中的特定目標(biāo)。假設(shè)要跟蹤一個(gè)在人群中行走的人,以下關(guān)于目標(biāo)跟蹤方法的描述,哪一項(xiàng)是不正確的?()A.基于濾波的方法,如卡爾曼濾波和粒子濾波,可以預(yù)測(cè)目標(biāo)的位置和狀態(tài)B.基于深度學(xué)習(xí)的方法能夠?qū)W習(xí)目標(biāo)的外觀特征,提高跟蹤的準(zhǔn)確性和魯棒性C.目標(biāo)跟蹤過程中,目標(biāo)的外觀變化、遮擋和背景干擾等因素不會(huì)對(duì)跟蹤結(jié)果產(chǎn)生影響D.結(jié)合多種特征和算法的融合跟蹤方法,可以綜合利用不同方法的優(yōu)勢(shì),提高跟蹤性能21、計(jì)算機(jī)視覺中的表情識(shí)別旨在判斷圖像或視頻中人物的表情。假設(shè)要開發(fā)一個(gè)用于在線教育的表情識(shí)別系統(tǒng),以下關(guān)于表情特征的提取,哪一項(xiàng)是需要重點(diǎn)關(guān)注的?()A.提取面部肌肉的細(xì)微運(yùn)動(dòng)作為特征B.僅考慮眼睛和嘴巴的形狀變化C.忽略面部的整體輪廓,只關(guān)注局部特征D.不進(jìn)行任何特征提取,直接使用原始圖像進(jìn)行分類22、在計(jì)算機(jī)視覺的人臉識(shí)別任務(wù)中,需要應(yīng)對(duì)姿態(tài)、表情和光照等變化。假設(shè)要構(gòu)建一個(gè)能夠在不同環(huán)境下準(zhǔn)確識(shí)別人臉的系統(tǒng),以下哪種人臉識(shí)別方法在處理這些變化時(shí)具有更高的準(zhǔn)確性和魯棒性?()A.基于特征點(diǎn)的人臉識(shí)別B.基于模板匹配的人臉識(shí)別C.基于深度學(xué)習(xí)的人臉識(shí)別D.基于幾何形狀的人臉識(shí)別23、計(jì)算機(jī)視覺中的紋理分析用于描述圖像中重復(fù)出現(xiàn)的模式和結(jié)構(gòu)。假設(shè)要對(duì)一塊布料的紋理進(jìn)行分析,以判斷其材質(zhì)和質(zhì)量,同時(shí)布料可能存在褶皺和變形。以下哪種紋理分析方法在處理這種復(fù)雜情況時(shí)更為準(zhǔn)確?()A.統(tǒng)計(jì)紋理分析B.結(jié)構(gòu)紋理分析C.基于模型的紋理分析D.基于深度學(xué)習(xí)的紋理分析24、計(jì)算機(jī)視覺中的全景圖像拼接是將多個(gè)視角的圖像組合成一個(gè)全景圖像。假設(shè)我們有一組用普通相機(jī)拍攝的場(chǎng)景照片,要拼接成一個(gè)無縫的全景圖,以下哪個(gè)步驟對(duì)于拼接的質(zhì)量影響最大?()A.特征點(diǎn)提取和匹配B.圖像融合和過渡處理C.相機(jī)參數(shù)估計(jì)和校正D.圖像的裁剪和縮放25、計(jì)算機(jī)視覺中的工業(yè)檢測(cè)任務(wù)需要檢測(cè)產(chǎn)品的缺陷和瑕疵。假設(shè)要在生產(chǎn)線上對(duì)一批電子產(chǎn)品的外觀進(jìn)行檢測(cè),要求快速準(zhǔn)確地發(fā)現(xiàn)微小的缺陷。以下哪種工業(yè)檢測(cè)方法在處理這種高精度要求的任務(wù)時(shí)最為適用?()A.機(jī)器視覺檢測(cè)B.人工目檢C.抽樣檢測(cè)D.基于統(tǒng)計(jì)的檢測(cè)26、圖像壓縮是為了減少圖像的數(shù)據(jù)量,同時(shí)保持可接受的視覺質(zhì)量。假設(shè)我們需要在網(wǎng)絡(luò)上傳輸大量的圖像,以下哪種圖像壓縮標(biāo)準(zhǔn)能夠在保證較高壓縮比的同時(shí),提供較好的圖像質(zhì)量?()A.JPEGB.PNGC.GIFD.BMP27、在一個(gè)基于計(jì)算機(jī)視覺的智能零售系統(tǒng)中,需要對(duì)顧客的購物行為進(jìn)行分析,如拿起商品、放回商品等動(dòng)作的識(shí)別。以下哪種技術(shù)在動(dòng)作識(shí)別方面可能發(fā)揮重要作用?()A.光流分析B.目標(biāo)跟蹤C(jī).動(dòng)作捕捉D.以上都是28、在進(jìn)行圖像增強(qiáng)時(shí),我們常常需要在保持圖像細(xì)節(jié)的同時(shí)改善圖像質(zhì)量。假設(shè)一張低光照條件下拍攝的圖像存在大量噪聲,以下哪種圖像增強(qiáng)方法可能不太適合處理這種情況?()A.直方圖均衡化B.基于小波變換的去噪方法C.中值濾波D.高斯濾波29、計(jì)算機(jī)視覺中的動(dòng)作識(shí)別用于分析視頻中的人體動(dòng)作。假設(shè)要識(shí)別一段舞蹈視頻中的動(dòng)作類別。以下關(guān)于動(dòng)作識(shí)別方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以基于時(shí)空特征提取的方法,捕捉動(dòng)作在時(shí)間和空間上的變化B.深度學(xué)習(xí)中的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和長短時(shí)記憶網(wǎng)絡(luò)(LSTM)適用于動(dòng)作序列的分析C.動(dòng)作識(shí)別只需要關(guān)注人體的關(guān)節(jié)位置,不需要考慮人體的整體形態(tài)D.多模態(tài)數(shù)據(jù)融合,如結(jié)合音頻和視頻信息,可以提高動(dòng)作識(shí)別的準(zhǔn)確率30、在一個(gè)基于計(jì)算機(jī)視覺的機(jī)器人導(dǎo)航系統(tǒng)中,需要根據(jù)環(huán)境圖像來規(guī)劃機(jī)器人的路徑。以下哪種視覺導(dǎo)航方法可能更適合復(fù)雜動(dòng)態(tài)環(huán)境?()A.基于地圖的導(dǎo)航B.基于視覺里程計(jì)的導(dǎo)航C.基于深度學(xué)習(xí)的端到端導(dǎo)航D.以上都是二、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)利用圖像分割技術(shù),從衛(wèi)星云圖中分割出云層。2、(本題5分)運(yùn)用圖像識(shí)別技術(shù),檢測(cè)工廠倉庫貨物的存儲(chǔ)狀態(tài)。3、(本題5分)使用目標(biāo)跟蹤算法,跟蹤賽車場(chǎng)上賽車的速度變化。4、(本題5分)基于計(jì)算機(jī)視覺的智能門禁系統(tǒng),通過人臉識(shí)別實(shí)現(xiàn)自動(dòng)開門。5、(本題5分)開發(fā)一個(gè)可以識(shí)別不同種類昆蟲的計(jì)算機(jī)視覺系統(tǒng)。三、簡答題(本大題共5個(gè)小題,共25分)1、(本題5分)簡述圖像的色彩空間選

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論