




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
題組層級(jí)快練(三十六)1.(2016·衡水調(diào)研卷)兩旅客坐火車外出旅游,希望座位連在一起,且有一個(gè)靠窗,已知火車上的座位如圖所示,則下列座位號(hào)碼符合要求的應(yīng)當(dāng)是()窗口12過道3窗口678111213………A.48,49 B.62,63C.75,76 D.84,85答案D解析由已知圖中座位的排序規(guī)律可知,被5除余1的數(shù)和能被5整除的座位號(hào)靠窗,由于兩旅客希望座位連在一起,且有一個(gè)靠窗,分析答案中的4組座位號(hào)知,只有D項(xiàng)符合條件.2.如圖所示,是某小朋友在用火柴拼圖時(shí)呈現(xiàn)的圖形,其中第1個(gè)圖形用了3根火柴,第2個(gè)圖形用了9根火柴,第3個(gè)圖形用了18根火柴,……,則第2016個(gè)圖形用的火柴根數(shù)為()A.2014×2017 B.2015×2016C.2015×2017 D.3024×2017答案D解析由題意,第1個(gè)圖形需要火柴的根數(shù)為3×1;第2個(gè)圖形需要火柴的根數(shù)為3×(1+2);第3個(gè)圖形需要火柴的根數(shù)為3×(1+2+3);……由此,可以推出,第n個(gè)圖形需要火柴的根數(shù)為3×(1+2+3+…+n).所以第2016個(gè)圖形所需火柴的根數(shù)為3×(1+2+3+…+2016)=3×eq\f(2016×(1+2016),2)=3024×2017,故選D.3.已知a1=3,a2=6,且an+2=an+1-an,則a2016=()A.3 B.-3C.6 D.-6答案B解析∵a1=3,a2=6,∴a3=3,a4=-3,a5=-6,a6=-3,a7=3,…,∴{an}是以6為周期的周期數(shù)列.又2016=6×335+6,∴a2016=a6=-3.選B.4.定義一種運(yùn)算“*”:對(duì)于自然數(shù)n滿足以下運(yùn)算性質(zhì):①1*1=1,②(n+1)*1=n*1+1,則n*1等于()A.n B.n+1C.n-1 D.n2答案A解析由(n+1)*1=n*1+1,得n*1=(n-1)*1+1=(n-2)*1+2=…=1*1+(n-1).又∵1*1=1,∴n*1=n.5.給出下面類比推理命題(其中Q為有理數(shù)集,R為實(shí)數(shù)集,C為復(fù)數(shù)集)①“若a,b∈R,則a-b=0?a=b”類比推出“若a,b∈C,則a-b=0?a=b”.②“若a,b∈R,則a-b>0?a>b”類比推出“若a,b∈C,則a-b>0?a>b”.③“若a,b,c,d∈R,則復(fù)數(shù)a+bi=c+di?a=c,b=d”類比推出“若a,b,c,d∈Q,則a+beq\r(2)=c+deq\r(2)?a=c,b=d”.其中類比得到的結(jié)論正確的個(gè)數(shù)是()A.0 B.1C.2 D.3答案C解析提示:①③正確.6.(2016·濟(jì)寧模擬)在平面幾何中有如下結(jié)論:正三角形ABC的內(nèi)切圓面積為S1,外接圓面積為S2,則eq\f(S1,S2)=eq\f(1,4),推廣到空間可以得到類似結(jié)論:已知正四面體P-ABC的內(nèi)切球體積為V1,外接球體積為V2,則eq\f(V1,V2)=()A.eq\f(1,8) B.eq\f(1,9)C.eq\f(1,64) D.eq\f(1,27)答案D解析正四面體的內(nèi)切球與外接球的半徑之比為1∶3,故體積之比為eq\f(V1,V2)=eq\f(1,27).7.已知x∈(0,+∞),觀察下列各式:x+eq\f(1,x)≥2,x+eq\f(4,x2)=eq\f(x,2)+eq\f(x,2)+eq\f(4,x2)≥3,x+eq\f(27,x3)=eq\f(x,3)+eq\f(x,3)+eq\f(x,3)+eq\f(27,x3)≥4,…,類比有x+eq\f(a,xn)≥n+1(n∈N*),則a=()A.n B.2nC.n2 D.nn答案D解析第一個(gè)式子是n=1的情況,此時(shí)a=1,第二個(gè)式子是n=2的情況,此時(shí)a=4,第三個(gè)式子是n=3的情況,此時(shí)a=33,歸納可以知道a=nn.8.已知an=(eq\f(1,3))n,把數(shù)列{an}的各項(xiàng)排成如下的三角形:a1a2a3a5a6a7a……記A(s,t)表示第s行的第t個(gè)數(shù),則A(11,12)=()A.(eq\f(1,3))67 B.(eq\f(1,3))68C.(eq\f(1,3))111 D.(eq\f(1,3))112答案D解析該三角形所對(duì)應(yīng)元素的個(gè)數(shù)為1,3,5,…,那么第10行的最后一個(gè)數(shù)為a100,第11行的第12個(gè)數(shù)為a112,即A(11,12)=(eq\f(1,3))112.9.已知函數(shù)f(x)=eq\f(ex,ex+1),且數(shù)列{an}滿足f(lnan)=an+1,a1=eq\f(1,4),則a2015=()A.eq\f(1,2015) B.eq\f(1,2016)C.eq\f(1,2017) D.eq\f(1,2018)答案D解析解法一:由f(lnan)=an+1,得eq\f(an,an+1)=an+1,即eq\f(1,an+1)-eq\f(1,an)=1,所以{eq\f(1,an)}是以eq\f(1,a1)=4為首項(xiàng),1為公差的等差數(shù)列,所以eq\f(1,an)=4+1×(n-1)=n+3,所以an=eq\f(1,n+3),從而a2015=eq\f(1,2018),故選D.解法二:由f(lnan)=an+1,得eq\f(an,an+1)=an+1,由a1=eq\f(1,4),得a2=eq\f(\f(1,4),\f(1,4)+1)=eq\f(1,5),a3=eq\f(\f(1,5),\f(1,5)+1)=eq\f(1,6),…,所以可歸納an=eq\f(1,n+3),從而a2015=eq\f(1,2018),故選D.10.(2016·西安八校聯(lián)考)觀察一列算式;1?1,1?2,2?1,1?3,2?2,3?1,1?4,2?3,3?2,4?1,…,則式子3?5是第()A.22項(xiàng) B.23項(xiàng)C.24項(xiàng) D.25項(xiàng)答案C解析兩數(shù)和為2的有1個(gè),和為3的有2個(gè),和為4的有3個(gè),和為5的有4個(gè),和為6的有5個(gè),和為7的有6個(gè),前面共有21個(gè),3?5為和為8的第3項(xiàng),所以為第24項(xiàng).故選C.11.(2015·陜西文)觀察下列等式:1-eq\f(1,2)=eq\f(1,2)1-eq\f(1,2)+eq\f(1,3)-eq\f(1,4)=eq\f(1,3)+eq\f(1,4)1-eq\f(1,2)+eq\f(1,3)-eq\f(1,4)+eq\f(1,5)-eq\f(1,6)=eq\f(1,4)+eq\f(1,5)+eq\f(1,6)……據(jù)此規(guī)律,第n個(gè)等式可為________.答案1-eq\f(1,2)+eq\f(1,3)-eq\f(1,4)+…+eq\f(1,2n-1)-eq\f(1,2n)=eq\f(1,n+1)+eq\f(1,n+2)+…+eq\f(1,2n)解析觀察等式知:第n個(gè)等式的左邊有2n個(gè)數(shù)相加減,奇數(shù)項(xiàng)為正,偶數(shù)項(xiàng)為負(fù),且分子為1,分母是1到2n的連續(xù)正整數(shù),等式的右邊是eq\f(1,n+1)+eq\f(1,n+2)+…+eq\f(1,2n).故答案為1-eq\f(1,2)+eq\f(1,3)-eq\f(1,4)+…+eq\f(1,2n-1)-eq\f(1,2n)=eq\f(1,n+1)+eq\f(1,n+2)+…+eq\f(1,2n).12.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,則S4,S8-S4,S12-S8,S16-S12成等差數(shù)列.類比以上結(jié)論有:設(shè)等比數(shù)列{bn}的前n項(xiàng)積為Tn,則T4,______,______,eq\f(T16,T12)成等比數(shù)列.答案eq\f(T8,T4),eq\f(T12,T8)解析對(duì)于等比數(shù)列,通過類比,在等比數(shù)列{bn}中前n項(xiàng)積為Tn,則T4=b1b2b3b4,T8=b1b2…b8,T12=b1b2…b12,T16=b1b2…b16,因此eq\f(T8,T4)=b5b6b7b8,eq\f(T12,T8)=b9b10b11b12,eq\f(T16,T12)=b13b14b15b16,而T4,eq\f(T8,T4),eq\f(T12,T8),eq\f(T16,T12)的公比為q16,因此T4,eq\f(T8,T4),eq\f(T12,T8),eq\f(T16,T12)成等比數(shù)列.13.設(shè)數(shù)列{an}是以d為公差的等差數(shù)列,數(shù)列{bn}是以q為公比的等比數(shù)列.將數(shù)列{an}的相關(guān)量或關(guān)系式輸入“LHQ型類比器”左端的入口處,經(jīng)過“LHQ型類比器”后從右端的出口處輸出數(shù)列{bn}的相關(guān)量或關(guān)系式,則在右側(cè)的“?”處應(yīng)該是________.答案Bn=b1×(eq\r(q))n-1解析注意類比的對(duì)應(yīng)關(guān)系:+→×,÷→開方,×→乘方,0→1,所以Bn=b1×(eq\r(q))n-1.14.已知eq\r(2+\f(2,3))=2eq\r(\f(2,3)),eq\r(3+\f(3,8))=3eq\r(\f(3,8)),eq\r(4+\f(4,15))=4eq\r(\f(4,15)),…,若eq\r(6+\f(a,t))=6eq\r(\f(a,t)),(a,t均為正實(shí)數(shù)),類比以上等式,可推測(cè)a,t的值,則a+t=________.答案41解析根據(jù)題中所列的前幾項(xiàng)的規(guī)律可知其通項(xiàng)應(yīng)為eq\r(n+\f(n,n2-1))=neq\r(\f(n,n2-1)),所以當(dāng)n=6時(shí),a=6,t=35,a+t=41.15.(2016·山東日照階段訓(xùn)練)二維空間中圓的一維測(cè)度(周長(zhǎng))l=2πr,二維測(cè)度(面積)S=πr2,觀察發(fā)現(xiàn)S′=l;三維空間中球的二維測(cè)度(表面積)S=4πr2,三維測(cè)度(體積)V=eq\f(4,3)πr3,觀察發(fā)現(xiàn)V′=S.已知四維空間中“超球”的三維測(cè)度V=8πr3,猜想其四維測(cè)度W=________.答案2πr4解析據(jù)歸納猜想可知(2πr4)′=8πr3,所以四維測(cè)度W=2πr4.16.某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2(-18°)+cos248°-sin(-18°)cos48°;⑤sin2(-25°)+cos255°-sin(-25°)cos55°.(1)試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù);(2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為一個(gè)三角恒等式,并證明你的結(jié)論.答案(1)eq\f(3,4)(2)sin2α+cos2(30°-α)-sinαcos(30°-α)=eq\f(3,4)解析方法一:(1)選擇②式,計(jì)算如下:sin215°+cos215°-sin15°cos15°=1-eq\f(1,2)sin30°=1-eq\f(1,4)=eq\f(3,4).(2)三角恒等式為sin2α+cos2(30°-α)-sinαcos(30°-α)=eq\f(3,4).證明如下:sin2α+cos2(30°-α)-sinαcos(30°-α)=sin2α+(cos30°cosα+sin30°sinα)2-sinα(cos30°cosα+sin30°sinα)=sin2α+eq\f(3,4)cos2α+eq\f(\r(3),2)sinαcosα+eq\f(1,4)sin2α-eq\f(\r(3),2)sinαcosα-eq\f(1,2)sin2α=eq\f(3,4)sin2α+eq\f(3,4)cos2α=eq\f(3,4).方法二:(1)同解法一.(2)三角恒等式為sin2α+cos2(30°-α)-sinαcos(30°-α)=eq\f(3,4).證明如下:sin2α+cos2(30°-α)-sinαcos(30°-α)=eq\f(1-cos2α,2)+eq\f(1+cos(60°-2α),2)-sinα·(cos30°cosα+sin30°sinα)=eq\f(1,2)-eq\f(1,2)cos2α+eq\f(1,2)+eq\f(1,2)(cos60°cos2α+sin60°sin2α)-eq\f(\r(3),2)sinαcosα-eq\f(1,2)sin2α=eq\f(1,2)-eq\f(1,2)cos2α+eq\f(1,2)+eq\f(1,4)cos2α+eq\f(\r(3),4)·sin2α-eq\f(\r(3),4)sin2α-eq\f(1,4)(1-cos2α)=1-eq\f(1,4)cos2α-eq\f(1,4)+eq\f(1,4)cos2α=eq\f(3,4).1.觀察下圖中圖形的規(guī)律,在其右下角的空格內(nèi)畫上合適的圖形為()答案A解析表格中的圖形都是矩形、圓、正三角形的不同排列,規(guī)律是每一行中只有一個(gè)圖形是空心的,其他兩個(gè)都是填充顏色的,第三行中已經(jīng)有正三角形是空心的了,因此另外一個(gè)應(yīng)該是陰影矩形.2.(2014·陜西理)觀察分析下表中的數(shù)據(jù):多面體面數(shù)(F)頂點(diǎn)數(shù)(V)棱數(shù)(E)三棱柱569五棱錐6610立方體6812猜想一般凸多面體中F,V,E所滿足的等式是________.答案F+V-E=2解析三棱柱中5+6-9=2;五棱錐中6+6-10=2;立方體中6+8-12=2,由此歸納可得F+V-E=2.3.(2016·山東日照模擬)在平面幾何中有如下結(jié)論:若正三角形ABC的內(nèi)切圓面積為S1,外接圓面積為S2,則eq\f(S1,S2)=eq\f(1,4).推廣到空間幾何體中可以得到類似結(jié)論:若正四面體ABCD的內(nèi)切球體積為V1,外接球體積為V2,則eq\f(V1,V2)=________.答案eq\f(1,27)解析設(shè)正四面體ABCD的棱長(zhǎng)為a,高為h,四個(gè)面的面積均為S,內(nèi)切球半徑為r,外接球半徑為R,則由4×eq\f(1,3)Sr=eq\f(1,3)Sh,得r=eq\f(1,4)h=eq\f(1,4)×eq\f(\r(6),3)a=eq\f(\r(6),12)a.由相似三角形的性質(zhì)可得R=eq\f(\r(6),4)a,所以eq\f(V1,V2)=(eq\f(r,R))3=(eq\f(\f(\r(6),12)a,\f(\r(6),4)a))3=eq\f(1,27).4.將側(cè)棱相互垂直的三棱錐稱為“直角三棱錐”,它的側(cè)面和底面分別叫直角三棱錐的“直角面和斜面”,過三棱錐的頂點(diǎn)及斜面任兩邊上的中點(diǎn)的截面均稱為斜面的“中面”.直角三角形具有性質(zhì):“斜邊的中線長(zhǎng)等斜邊邊長(zhǎng)的一半”,仿照此性質(zhì)寫出直角三棱錐具有的性質(zhì):________.答案在直角三棱錐中,斜面的中面面積等于斜面面積的四分之一.解析在直角三棱錐中,斜面的中面面積等于斜面面積的四分之一.如圖所示,在直角三棱錐A-BCD中,AB⊥AC,A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度倉儲(chǔ)物流勞務(wù)派遣安全責(zé)任書
- 2025年度在線貸款中介居間合作協(xié)議
- 二零二五年度企業(yè)內(nèi)部員工外出安全免責(zé)合同
- 2025年度個(gè)人租房合同協(xié)議書模板(含租賃房屋維修費(fèi)用承擔(dān))
- 2025年度應(yīng)屆大學(xué)生實(shí)習(xí)合同
- 國際發(fā)展合作的中國實(shí)踐 第六期綠色發(fā)展援助篇
- 2025年度抖音網(wǎng)紅達(dá)人合作推廣合同模板
- 2025年度合作社土地入股與農(nóng)業(yè)資源環(huán)境監(jiān)測(cè)合作協(xié)議
- 2025年度房屋租賃合同租賃雙方租賃期間租賃物租賃權(quán)轉(zhuǎn)讓協(xié)議
- 沙石運(yùn)輸行業(yè)自律公約
- 體育活動(dòng)策劃與組織課件
- 會(huì)計(jì)學(xué)專業(yè)數(shù)智化轉(zhuǎn)型升級(jí)實(shí)踐
- JJG 1204-2025電子計(jì)價(jià)秤檢定規(guī)程(試行)
- 中國糖尿病防治指南(2024版)解讀-1
- 2024年計(jì)算機(jī)二級(jí)WPS考試題庫(共380題含答案)
- 2024年德州職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫
- 跨學(xué)科實(shí)踐活動(dòng)10調(diào)查我國航天科技領(lǐng)域中新型材料新型能源的應(yīng)用課件九年級(jí)化學(xué)人教版(2024)下冊(cè)
- 大學(xué)生勞動(dòng)實(shí)踐活動(dòng)總結(jié)
- 代理分銷銷售協(xié)議書
- 2024年江蘇農(nóng)牧科技職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫參考答案
- 2024綜合基礎(chǔ)知識(shí)考試題庫及解析(146題)
評(píng)論
0/150
提交評(píng)論