




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
自覺遵守考場紀律如考試作弊此答卷無效密自覺遵守考場紀律如考試作弊此答卷無效密封線第1頁,共3頁南通科技職業(yè)學院
《排版設計》2023-2024學年第二學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的圖像修復任務中,假設要填補圖像中缺失或損壞的部分。以下哪種方法可能更有效地恢復圖像的完整性和真實性?()A.基于擴散的修復方法B.基于深度學習的圖像修復模型,如ContextEncoderC.用固定的圖案或顏色填充缺失部分D.不進行修復,保留圖像的缺失部分2、計算機視覺中的姿態(tài)估計任務,確定物體在空間中的位置和方向。假設要估計一個機器人手臂的姿態(tài),以下關于姿態(tài)估計方法的描述,正確的是:()A.基于幾何模型的姿態(tài)估計方法在復雜環(huán)境中總是能夠準確估計姿態(tài)B.深度學習中的端到端姿態(tài)估計網絡不需要對物體的結構和運動有先驗了解C.姿態(tài)估計的結果不受相機參數和拍攝角度的影響D.結合多種傳感器數據和深度學習的方法可以提高姿態(tài)估計的精度和魯棒性3、在計算機視覺的圖像檢索任務中,假設要從一個大型圖像數據庫中快速找到與給定圖像相似的圖像。以下關于圖像檢索方法的描述,正確的是:()A.基于文本標注的圖像檢索方法依賴于人工標注的準確性和完整性,檢索效果不穩(wěn)定B.基于內容的圖像檢索通過提取圖像的特征進行相似性比較,但特征的選擇對檢索結果影響不大C.哈希方法能夠將高維的圖像特征映射為低維的哈希碼,大大提高檢索效率,但會損失一定的準確性D.所有的圖像檢索方法都能夠在大規(guī)模數據庫中實現實時、準確的檢索4、計算機視覺中的圖像去噪旨在去除圖像中的噪聲,恢復清晰的圖像。假設要處理一張受到嚴重噪聲污染的天文圖像,以下關于去噪算法的選擇,哪一項是需要謹慎考慮的?()A.選擇基于濾波的去噪算法,如中值濾波B.采用基于深度學習的去噪算法,如自編碼器C.只考慮去噪效果,不關心圖像細節(jié)的保留D.根據噪聲的類型和強度選擇合適的去噪算法5、在計算機視覺中,圖像生成是創(chuàng)建新的圖像內容。以下關于圖像生成的說法,錯誤的是()A.可以通過生成對抗網絡(GAN)、變分自編碼器(VAE)等模型進行圖像生成B.圖像生成可以用于藝術創(chuàng)作、數據增強和虛擬場景構建等任務C.生成的圖像質量和真實性在不斷提高,但仍然存在一些缺陷和不完美之處D.圖像生成可以完全根據用戶的任意想象生成任何內容,不受任何限制6、在一個基于計算機視覺的機器人導航系統(tǒng)中,需要根據環(huán)境圖像來規(guī)劃機器人的路徑。以下哪種視覺導航方法可能更適合復雜動態(tài)環(huán)境?()A.基于地圖的導航B.基于視覺里程計的導航C.基于深度學習的端到端導航D.以上都是7、在計算機視覺的圖像分割任務中,假設要將一張醫(yī)學圖像中的病變區(qū)域準確分割出來。以下關于圖像分割方法的描述,正確的是:()A.基于閾值的分割方法簡單高效,適用于所有類型的醫(yī)學圖像分割B.區(qū)域生長法能夠根據像素的相似性進行分割,但容易受到噪聲的影響C.圖割算法在處理復雜的圖像結構時表現不佳,難以得到準確的分割結果D.深度學習中的全卷積網絡(FCN)在圖像分割中無法處理不同大小的病變區(qū)域8、在計算機視覺的圖像檢索任務中,假設要從海量的圖像庫中快速找到與給定圖像相似的圖像。以下關于圖像特征表示的選擇,哪一項是需要重點考慮的?()A.選擇具有高維度的特征向量,包含豐富的圖像信息B.采用低維度但具有區(qū)分性的特征表示,提高檢索效率C.忽略特征的維度和區(qū)分性,隨機選擇一種特征表示D.只使用圖像的顏色特征,忽略形狀和紋理等特征9、計算機視覺中的人臉檢測和識別是熱門研究方向。假設要在一個大規(guī)模的人臉數據庫中進行快速準確的人臉識別,以下哪種特征提取方法可能更具優(yōu)勢?()A.基于幾何特征的方法B.基于局部二值模式(LBP)的方法C.基于深度學習的方法D.基于主成分分析(PCA)的方法10、在計算機視覺的圖像生成任務中,除了生成新的圖像,還可以對已有圖像進行風格轉換。假設我們要將一張照片轉換為油畫風格,以下哪種方法能夠實現逼真的風格轉換效果?()A.基于圖像濾波和變換的方法B.基于深度學習的風格遷移算法,如CycleGANC.基于圖像融合和合成的方法D.基于顏色映射和紋理合成的方法11、在一個基于計算機視覺的工業(yè)質量檢測系統(tǒng)中,需要檢測產品表面的微小缺陷,如劃痕、凹坑等。由于缺陷的尺寸較小且形態(tài)多樣,以下哪種圖像處理算法可能對缺陷檢測最為有效?()A.邊緣檢測算法B.形態(tài)學操作C.閾值分割算法D.霍夫變換12、在圖像分類任務中,深度學習模型取得了顯著的成果。假設要對一組包含不同動物的圖像進行分類,以下關于圖像分類模型的描述,正確的是:()A.模型的層數越多,分類準確率一定越高B.數據增強技術,如旋轉、裁剪等,對模型的性能提升沒有幫助C.結合多種特征提取方法和分類器,可以提高圖像分類的準確性和魯棒性D.圖像分類模型不需要考慮圖像的空間信息,只關注像素值的統(tǒng)計特征13、計算機視覺中的圖像增強旨在改善圖像的質量和視覺效果。假設一張低對比度、有噪聲的醫(yī)學圖像需要進行增強處理,以突出病變區(qū)域并減少噪聲的影響。以下哪種圖像增強技術最為適合?()A.直方圖均衡化B.中值濾波C.高斯濾波D.銳化濾波14、在計算機視覺的實際應用中,光照變化會對圖像的處理和分析產生影響。以下關于光照變化的描述,不正確的是()A.光照變化可能導致圖像的亮度、對比度和顏色發(fā)生改變,增加了圖像處理的難度B.一些預處理技術,如直方圖均衡化,可以在一定程度上減輕光照變化的影響C.深度學習模型能夠自動適應各種光照變化,無需進行額外的處理D.光照變化對于目標檢測和跟蹤等任務的準確性可能會產生較大的影響15、計算機視覺中的光流估計用于計算圖像中像素的運動信息。假設要估計一段視頻中物體的運動速度和方向,以下關于光流估計方法的描述,正確的是:()A.傳統(tǒng)的基于梯度的光流估計方法在復雜場景中能夠準確計算光流B.深度學習中的光流估計網絡不需要大量的標注數據進行訓練C.光流估計的結果不受圖像噪聲和模糊的影響D.結合時空信息的深度學習光流估計方法能夠提高估計的準確性和魯棒性16、在計算機視覺中,目標檢測是一項重要的任務。假設要開發(fā)一個能夠在城市交通場景中檢測車輛和行人的系統(tǒng)。以下關于目標檢測算法的選擇,哪一項是需要重點考慮的因素?()A.算法的檢測速度,以滿足實時性要求B.算法在小目標檢測上的性能,因為車輛和行人在圖像中可能較小C.算法的模型復雜度,越復雜的模型效果越好D.算法是否開源,開源的算法更易于使用17、計算機視覺在智能交通系統(tǒng)中的應用可以優(yōu)化交通流量和提高安全性。假設要通過計算機視覺監(jiān)測道路上的車輛擁堵情況。以下關于計算機視覺在智能交通中的描述,哪一項是錯誤的?()A.可以通過車輛檢測和計數來評估道路的擁堵程度B.能夠識別車輛的類型和行駛方向,為交通管理提供數據支持C.計算機視覺在智能交通中的應用完全不受惡劣天氣和光照條件的影響D.可以與交通信號控制系統(tǒng)聯動,實現自適應的交通信號配時18、計算機視覺中的圖像增強技術可以改善圖像質量。假設要對一張低光照條件下拍攝的圖像進行增強,以下關于圖像增強方法的描述,正確的是:()A.簡單地增加圖像的亮度就能有效改善低光照圖像的質量B.直方圖均衡化方法總是能夠在不引入噪聲的情況下增強圖像對比度C.基于深度學習的圖像增強方法能夠自適應地學習到適合的增強策略D.圖像增強不會改變圖像的原始信息和內容19、在計算機視覺中,特征提取是非常關鍵的一步。假設我們要對一組風景圖像進行特征提取,以便后續(xù)的圖像檢索和分類任務。以下哪種特征提取方法能夠捕捉到圖像的全局和局部特征,并且對圖像的旋轉、縮放等變換具有較好的不變性?()A.尺度不變特征變換(SIFT)B.方向梯度直方圖(HOG)C.局部二值模式(LBP)D.卷積神經網絡自動學習的特征20、在計算機視覺的圖像去噪任務中,去除圖像中的噪聲。假設要處理一張被噪聲嚴重污染的天文圖像,以下關于圖像去噪方法的描述,哪一項是不正確的?()A.均值濾波和中值濾波等傳統(tǒng)方法可以在一定程度上去除噪聲,但可能會模糊圖像細節(jié)B.基于小波變換的方法能夠在去除噪聲的同時較好地保留圖像的邊緣和細節(jié)C.深度學習方法通過學習噪聲和干凈圖像之間的映射關系,實現有效的去噪D.圖像去噪可以完全恢復被噪聲破壞的原始圖像信息,沒有任何損失21、在計算機視覺的行人重識別任務中,假設要在多個攝像頭拍攝的畫面中找到同一個行人。以下關于特征融合的方法,哪一項是不太合理的?()A.將行人的外觀特征和步態(tài)特征進行融合B.簡單地將不同特征進行拼接,不考慮權重分配C.根據特征的重要性為其分配不同的權重進行融合D.利用深度學習模型自動學習特征的融合方式22、計算機視覺中的深度估計是確定場景中物體距離相機的遠近。假設要為機器人導航提供深度信息,以下關于深度估計方法的精度要求,哪一項是最為關鍵的?()A.能夠區(qū)分不同物體的大致距離范圍即可B.提供精確到毫米級別的深度信息,確保機器人安全導航C.深度估計的精度對機器人導航影響不大,可以忽略D.精度要求取決于機器人的運動速度,速度越快要求精度越低23、在計算機視覺的圖像修復任務中,恢復圖像中缺失或損壞的部分。假設要修復一張老照片中缺失的部分,以下關于圖像修復方法的描述,正確的是:()A.基于紋理合成的圖像修復方法能夠完美恢復復雜的結構和細節(jié)B.深度學習中的自編碼器在圖像修復中無法學習到有效的特征表示C.圖像修復的結果不受缺失區(qū)域的大小和形狀的影響D.結合先驗知識和上下文信息的深度學習方法可以產生更合理和自然的修復效果24、在計算機視覺中,視頻摘要生成是從長視頻中提取關鍵內容并生成簡潔的摘要。以下關于視頻摘要生成的敘述,不正確的是()A.視頻摘要生成可以基于關鍵幀提取、內容分析和故事線構建等方法B.深度學習方法能夠學習視頻的語義信息,生成更有代表性的摘要C.視頻摘要生成在視頻瀏覽、檢索和存儲等方面具有實用價值D.視頻摘要生成能夠完全準確地反映視頻的所有重要內容,沒有任何信息丟失25、圖像分類是計算機視覺的常見應用之一。考慮一個需要對大量自然風景圖片進行分類的任務,這些圖片包含了不同的季節(jié)、地理位置和天氣條件。為了提高分類準確率,以下哪種預處理操作可能最為有效?()A.對圖像進行裁剪和縮放,使其具有統(tǒng)一的尺寸B.對圖像進行直方圖均衡化,增強對比度C.將圖像轉換為灰度圖像,減少顏色信息的干擾D.對圖像進行隨機旋轉和翻轉,增加數據多樣性二、簡答題(本大題共4個小題,共20分)1、(本題5分)描述計算機視覺在旱災監(jiān)測中的應用。2、(本題5分)描述計算機視覺在海洋物理過程研究中的應用。3、(本題5分)解釋計算機視覺中的目標遮擋處理方法。4、(本題5分)說明計算機視覺在洪澇災害監(jiān)測中的應用。三、分析題(本大題共5個小題,共25分)1、(本題5分)研究某銀行的信用卡設計,探討其在外觀設計、功能設計和品牌傳達方面的特色。2、(本題5分)分析某旅游景區(qū)的春季賞花活動宣傳物料設計,探討其美麗的花海展示、活動內容介紹、交通指南如何吸引游客。3、(本題5分)分析某校園文化節(jié)的海報和活動現場布置設計,研究如何通過視覺元素體現校園文化特色,營造歡樂的節(jié)日氛圍。4、(本題5分)研究某藝術展覽的邀請函設計,分析其如
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 逆襲之路:2024年陪診師考試試題與答案
- 經濟環(huán)境對企業(yè)戰(zhàn)略的影響試題及答案
- 2024年12月磚體工施工人員急救培訓附加協議
- 精確分析:2024監(jiān)理工程師考試試題及答案
- 2024年度北京市專利代理師科目一(專利法律知識)押題練習試卷B卷附答案
- 二胎時代育嬰師考試試題及答案
- 2025年滑雪教練職業(yè)技能測試卷:滑雪教練教學評估與反饋模擬試題
- 2025年花藝師職業(yè)資格考試真題卷-花卉市場消費者行為研究試題
- 2025年花藝師職業(yè)資格考試真題卷:花卉市場趨勢與競爭分析試題
- 2025年大學輔導員招聘考試題庫(教育心理專項)心理教育研究試題
- (2024年)治療肩周炎課件
- 《新聞評論》課件 第四章 新聞評論的基本類型
- 基因工程病毒疫苗-課件
- 超市產品質量與風險防控培訓
- 中考英語語法填空總復習-教學課件(共22張PPT)
- 機場安檢防爆培訓課件模板
- 一到六年級語文詞語表人教版
- 2024年浙江杭州地鐵運營分公司招聘筆試參考題庫含答案解析
- 2024年九省聯考新高考 數學試卷(含答案解析)
- 學生營養(yǎng)膳食
- 《質量檢驗培訓》課件
評論
0/150
提交評論