![廣東省清連中學(xué)2023-2024學(xué)年高三下學(xué)期第三次聯(lián)考數(shù)學(xué)試題試卷_第1頁](http://file4.renrendoc.com/view15/M02/2D/33/wKhkGWeqz0OARA4XAAKxwxUbj_A903.jpg)
![廣東省清連中學(xué)2023-2024學(xué)年高三下學(xué)期第三次聯(lián)考數(shù)學(xué)試題試卷_第2頁](http://file4.renrendoc.com/view15/M02/2D/33/wKhkGWeqz0OARA4XAAKxwxUbj_A9032.jpg)
![廣東省清連中學(xué)2023-2024學(xué)年高三下學(xué)期第三次聯(lián)考數(shù)學(xué)試題試卷_第3頁](http://file4.renrendoc.com/view15/M02/2D/33/wKhkGWeqz0OARA4XAAKxwxUbj_A9033.jpg)
![廣東省清連中學(xué)2023-2024學(xué)年高三下學(xué)期第三次聯(lián)考數(shù)學(xué)試題試卷_第4頁](http://file4.renrendoc.com/view15/M02/2D/33/wKhkGWeqz0OARA4XAAKxwxUbj_A9034.jpg)
![廣東省清連中學(xué)2023-2024學(xué)年高三下學(xué)期第三次聯(lián)考數(shù)學(xué)試題試卷_第5頁](http://file4.renrendoc.com/view15/M02/2D/33/wKhkGWeqz0OARA4XAAKxwxUbj_A9035.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省清連中學(xué)2022-2023學(xué)年高三下學(xué)期第三次聯(lián)考數(shù)學(xué)試題試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項之和為()A.56383 B.57171 C.59189 D.612422.由實數(shù)組成的等比數(shù)列{an}的前n項和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知是平面內(nèi)互不相等的兩個非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.4.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.6.已知是過拋物線焦點的弦,是原點,則()A.-2 B.-4 C.3 D.-37.函數(shù),,的部分圖象如圖所示,則函數(shù)表達(dá)式為()A. B.C. D.8.設(shè)命題p:>1,n2>2n,則p為()A. B.C. D.9.的展開式中含的項的系數(shù)為()A. B.60 C.70 D.8010.設(shè)f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.11.過拋物線的焦點作直線與拋物線在第一象限交于點A,與準(zhǔn)線在第三象限交于點B,過點作準(zhǔn)線的垂線,垂足為.若,則()A. B. C. D.12.2019年某校迎國慶70周年歌詠比賽中,甲乙兩個合唱隊每場比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個位數(shù)字為葉).若甲隊得分的中位數(shù)是86,乙隊得分的平均數(shù)是88,則()A.170 B.10 C.172 D.12二、填空題:本題共4小題,每小題5分,共20分。13.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機選一匹進(jìn)行一場比賽,則田忌的馬獲勝的概率為__________.14.雙曲線的左焦點為,點,點P為雙曲線右支上的動點,且周長的最小值為8,則雙曲線的實軸長為________,離心率為________.15.已知橢圓的左右焦點分別為,過且斜率為的直線交橢圓于,若三角形的面積等于,則該橢圓的離心率為________.16.(5分)已知橢圓方程為,過其下焦點作斜率存在的直線與橢圓交于兩點,為坐標(biāo)原點,則面積的取值范圍是____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知三棱錐中側(cè)面與底面都是邊長為2的等邊三角形,且面面,分別為線段的中點.為線段上的點,且.(1)證明:為線段的中點;(2)求二面角的余弦值.18.(12分)已知,,為正數(shù),且,證明:(1);(2).19.(12分)在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρcos2θ=4asinθ?(a>0),直線l的參數(shù)方程為x=-2+22t,y=-1+(I)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程(不要求具體過程);(II)設(shè)P(-2,-1),若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.20.(12分)已知數(shù)列滿足,,數(shù)列滿足.(Ⅰ)求證數(shù)列是等比數(shù)列;(Ⅱ)求數(shù)列的前項和.21.(12分)等比數(shù)列中,.(Ⅰ)求的通項公式;(Ⅱ)記為的前項和.若,求.22.(10分)已知函數(shù),.(1)若不等式對恒成立,求的最小值;(2)證明:.(3)設(shè)方程的實根為.令若存在,,,使得,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項和公式,可得結(jié)果.【詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項之和為.故選:C.【點睛】本題考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題。2.C【解析】
根據(jù)等比數(shù)列的性質(zhì)以及充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】解:若{an}是等比數(shù)列,則,
若,則,即成立,
若成立,則,即,
故“”是“”的充要條件,
故選:C.【點睛】本題主要考查充分條件和必要條件的判斷,利用等比數(shù)列的通項公式是解決本題的關(guān)鍵.3.C【解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設(shè),則,在三角形中,由正弦定理得,所以,所以,故選C.考點:1.向量加減法的幾何意義;2.正弦定理;3.正弦函數(shù)性質(zhì).4.A【解析】
設(shè)成立;反之,滿足,但,故選A.5.D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點睛】本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.6.D【解析】
設(shè),,設(shè):,聯(lián)立方程得到,計算得到答案.【詳解】設(shè),,故.易知直線斜率不為,設(shè):,聯(lián)立方程,得到,故,故.故選:.【點睛】本題考查了拋物線中的向量的數(shù)量積,設(shè)直線為可以簡化運算,是解題的關(guān)鍵.7.A【解析】
根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,,,解得,因為函數(shù)過點,所以,,即,解得,因為,所以,.故選:A【點睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.8.C【解析】根據(jù)命題的否定,可以寫出:,所以選C.9.B【解析】
展開式中含的項是由的展開式中含和的項分別與前面的常數(shù)項和項相乘得到,由二項式的通項,可得解【詳解】由題意,展開式中含的項是由的展開式中含和的項分別與前面的常數(shù)項和項相乘得到,所以的展開式中含的項的系數(shù)為.故選:B【點睛】本題考查了二項式系數(shù)的求解,考查了學(xué)生綜合分析,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.10.D【解析】
利用是偶函數(shù)化簡,結(jié)合在區(qū)間上的單調(diào)性,比較出三者的大小關(guān)系.【詳解】是偶函數(shù),,而,因為在上遞減,,即.故選:D【點睛】本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎(chǔ)題.11.C【解析】
需結(jié)合拋物線第一定義和圖形,得為等腰三角形,設(shè)準(zhǔn)線與軸的交點為,過點作,再由三角函數(shù)定義和幾何關(guān)系分別表示轉(zhuǎn)化出,,結(jié)合比值與正切二倍角公式化簡即可【詳解】如圖,設(shè)準(zhǔn)線與軸的交點為,過點作.由拋物線定義知,所以,,,,所以.故選:C【點睛】本題考查拋物線的幾何性質(zhì),三角函數(shù)的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于中檔題12.D【解析】
中位數(shù)指一串?dāng)?shù)據(jù)按從?。ù螅┑酱螅ㄐ。┡帕泻?,處在最中間的那個數(shù),平均數(shù)指一串?dāng)?shù)據(jù)的算術(shù)平均數(shù).【詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【點睛】本題考查莖葉圖的應(yīng)用,涉及到中位數(shù)、平均數(shù)的知識,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13..【解析】分析:由題意結(jié)合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結(jié)合古典概型公式可得,田忌的馬獲勝的概率為.點睛:有關(guān)古典概型的概率問題,關(guān)鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復(fù)、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.14.22【解析】
設(shè)雙曲線的右焦點為,根據(jù)周長為,計算得到答案.【詳解】設(shè)雙曲線的右焦點為.周長為:.當(dāng)共線時等號成立,故,即實軸長為,.故答案為:;.【點睛】本題考查雙曲線周長的最值問題,離心率,實軸長,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.15.【解析】
由題得直線的方程為,代入橢圓方程得:,設(shè)點,則有,由,且解出,進(jìn)而求解出離心率.【詳解】由題知,直線的方程為,代入消得:,設(shè)點,則有,,而,又,解得:,所以離心率.故答案為:【點睛】本題主要考查了直線與橢圓的位置關(guān)系,三角形面積計算與離心率的求解,考查了學(xué)生的運算求解能力16.【解析】
由題意,,則,得.由題意可設(shè)的方程為,,聯(lián)立方程組,消去得,恒成立,,,則,點到直線的距離為,則,又,則,當(dāng)且僅當(dāng)即時取等號.故面積的取值范圍是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【解析】
(1)設(shè)為中點,連結(jié),先證明,可證得,假設(shè)不為線段的中點,可得平面,這與矛盾,即得證;(2)以為原點,以分別為軸建立空間直角坐標(biāo)系,分別求解平面,平面的法向量的法向量,利用二面角的向量公式,即得解.【詳解】(1)設(shè)為中點,連結(jié).∴,,又平面,平面,∴.又分別為中點,,又,∴.假設(shè)不為線段的中點,則與是平面內(nèi)內(nèi)的相交直線,從而平面,這與矛盾,所以為線段的中點.(2)以為原點,由條件面面,∴,以分別為軸建立空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的法向量為所以取,則,.同法可求得平面的法向量為∴,由圖知二面角為銳二面角,二面角的余弦值為.【點睛】本題考查了立體幾何與空間向量綜合,考查了學(xué)生邏輯推理,空間想象,數(shù)學(xué)運算的能力,屬于中檔題.18.(1)證明見解析;(2)證明見解析.【解析】
(1)利用均值不等式即可求證;(2)利用,結(jié)合,即可證明.【詳解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【點睛】本題考查利用均值不等式證明不等式,涉及的妙用,屬綜合性中檔題.19.(I)x2=4aya>0,x-y+1=0【解析】
(I)利用所給的極坐標(biāo)方程和參數(shù)方程,直接整理化簡得到直角坐標(biāo)方程和普通方程;(II)聯(lián)立直線的參數(shù)方程和C的直角坐標(biāo)方程,結(jié)合韋達(dá)定理以及等比數(shù)列的性質(zhì)即可求得答案.【詳解】(I)曲線C:ρcos2可得ρ2cos2直線l的參數(shù)方程為x=-2+22t,x-y=-1,得x-y+1=0;(II)將x=-2+22t,y=-1+2t韋達(dá)定理:t1由題意得MN2=PM可得(t即32(a+1)解得a=【點睛】本題考查了極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)和普通方程的互化,以及參數(shù)方程的綜合知識,結(jié)合等比數(shù)列,熟練運用知識,屬于較易題.20.(Ⅰ)見證明;(Ⅱ)【解析】
(Ⅰ)利用等比數(shù)列的定義結(jié)合得出數(shù)列是等比數(shù)列(Ⅱ)數(shù)列是“等比-等差”的類型,利用分組求和即可得出前項和.【詳解】解:(Ⅰ)當(dāng)時,,故.當(dāng)時,,則,,數(shù)列是首項為,公比為的等比數(shù)列.(Ⅱ)由(Ⅰ)得,,,.【點睛】(Ⅰ)證明數(shù)列是等比數(shù)列可利用定義法得出(Ⅱ)采用分組求和:把一個數(shù)列分成幾個可以直接求和的數(shù)列.21.(Ⅰ)或(Ⅱ)12【解析】
(1)先設(shè)數(shù)列的公比為,根據(jù)題中條件求出公比,即可得出通項公式;(2)根據(jù)(1)的結(jié)果,由等比數(shù)列的求和公式,即可求出結(jié)果.【詳解】(1)設(shè)數(shù)列的公比為,,,或.(2)時,,解得;時,,無正整數(shù)解;綜上所述.【點睛】本題主要考查等比數(shù)列,熟記等比數(shù)列的通項公式與求和公式即可,屬于基礎(chǔ)題型.22.(1)(2)證明見解析(3)證明見解析【解析】
(1)由題意可得,,令,利用導(dǎo)數(shù)得在上單調(diào)遞減,進(jìn)而可得結(jié)論;(2)不等式轉(zhuǎn)化為,令,,利用導(dǎo)數(shù)得單調(diào)性即可得到答案;(3)由題意可得,進(jìn)而可將不等式轉(zhuǎn)化為,再利用單調(diào)性可得,記,,再利用導(dǎo)數(shù)研究單調(diào)性可得在上單調(diào)遞增,即,即,即可得到結(jié)論.【詳解】(1),即,化簡可得.令
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 滬科版數(shù)學(xué)九年級上冊《平行線分線段成比例》聽評課記錄1
- 蘇科版版數(shù)學(xué)七年級上冊聽評課記錄《3-5 去括號》
- 2022年新課標(biāo)八年級上冊歷史第四單元新民主主義革命的開始12-14課共3課時聽課評課記錄
- 一年級拼音聽評課記錄
- 湘教版數(shù)學(xué)八年級上冊5.2《二次根式的除法》聽評課記錄1
- 蘇科版數(shù)學(xué)七年級下冊7.5.1《多邊形的內(nèi)角和與外角和》聽評課記錄
- 商鋪租賃長期出租合同范本
- 農(nóng)業(yè)開發(fā)戰(zhàn)略合作協(xié)議書范本
- 2025年度焊接清包工勞務(wù)創(chuàng)新合作協(xié)議
- 郊區(qū)中等裝修住宅長期出租協(xié)議書范本
- 自卸車司機實操培訓(xùn)考核表
- 教師個人基本信息登記表
- 中考現(xiàn)代文閱讀理解題精選及答案共20篇
- ESD測試作業(yè)指導(dǎo)書-防靜電手環(huán)
- 高頻變壓器的制作流程
- 春季開學(xué)安全第一課PPT、中小學(xué)開學(xué)第一課教育培訓(xùn)主題班會PPT模板
- JJG30-2012通用卡尺檢定規(guī)程
- 部編版人教版二年級上冊語文教材分析
- 艾賓浩斯遺忘曲線復(fù)習(xí)方法表格模板100天
- APR版制作流程
- 《C++程序設(shè)計》完整教案
評論
0/150
提交評論