




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
一、第二型曲線積分的概念與性質(zhì)二、第二型曲線積分的計(jì)算法
*三、兩類曲線積分之間的聯(lián)系
第二節(jié)第二型曲線積分
第十一章一、第二型曲線積分的概念與性質(zhì)引例:
變力沿曲線所作的功.設(shè)一質(zhì)點(diǎn)受如下變力作用在xoy平面內(nèi)從點(diǎn)A沿光滑曲線弧L移動到點(diǎn)B,求移“分割”“近似”“求和”“取極限”變力沿直線所作的功解決辦法:動過程中變力所作的功W.1)“分割”.2)“近似”把L分成n個小弧段,有向小弧段近似代替,
則有所做的功為F
沿則用有向線段
上任取一點(diǎn)在定義.設(shè)L為xoy平面內(nèi)從A到B的一條有向光滑弧,若對L的任意分割和在局部弧段上任意取點(diǎn),
都存在,在有向曲線弧L上則稱此極限為函數(shù)的第二型曲線積分.其中,函數(shù),L稱為積分弧段
或
積分曲線
.稱為被積在L上定義了一個向量函數(shù)極限記作若
為空間曲線弧,記稱為對x的第二型曲線積分;稱為對y的第二型曲線積分.若記,第二型曲線積分也可寫作類似地,性質(zhì)(1)若L可分成k條有向光滑曲線弧(2)用L-
表示L的反向弧,則則
定積分是第二型曲線積分的特例.說明:
第二型曲線積分必須注意積分弧段的方向
!二、第二型曲線積分的計(jì)算法定理:在有向光滑弧L上有定義且L的參數(shù)方程為則曲線積分連續(xù),證明:
下面先證存在,且有對應(yīng)參數(shù)設(shè)分點(diǎn)根據(jù)定義由于對應(yīng)參數(shù)因?yàn)長為光滑弧,同理可證特別是,如果L的方程為則對空間光滑曲線弧
:類似有例1.
計(jì)算其中L為沿拋物線解法1
取x為參數(shù),則解法2
取y為參數(shù),則從點(diǎn)的一段.
例2.
計(jì)算其中L為(1)半徑為a圓心在原點(diǎn)的上半圓周,方向?yàn)槟鏁r針方向;(2)從點(diǎn)A(a,0)沿x軸到點(diǎn)B(–a,0).解:
(1)取L的參數(shù)方程為(2)取L的方程為則則例3.
計(jì)算其中L為(1)拋物線
(2)拋物線(3)有向折線
解:
(1)原式(2)原式(3)原式例4.
設(shè)在力場作用下,質(zhì)點(diǎn)由沿
移動到解:
(1)(2)
的參數(shù)方程為試求力場對質(zhì)點(diǎn)所作的功.其中
為例5.
求其中從z軸正向看為順時針方向.解:
取的參數(shù)方程*三、兩類曲線積分之間的聯(lián)系設(shè)有向光滑弧L以弧長為參數(shù)
的參數(shù)方程為已知L切向量的方向余弦為則兩類曲線積分有如下聯(lián)系類似地,在空間曲線
上的兩類曲線積分的聯(lián)系是令記A在t上的投影為二者夾角為
*例6.
設(shè)曲線段L的長度為s,證明續(xù),證:設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度互聯(lián)網(wǎng)公司單位員工勞動合同書(股權(quán)激勵方案)
- 電商物流與城市交通的協(xié)同發(fā)展研究
- 中國壓鑄零配件項(xiàng)目投資可行性研究報告
- 2025年度帶兒童游樂設(shè)施商品房預(yù)售房合同
- 賓館垃圾處理服務(wù)合同
- 二建項(xiàng)目管理合同范本
- 體育館裝修質(zhì)保金協(xié)議
- 二零二五年度貸款續(xù)貸服務(wù)合同
- 2025年度企業(yè)銀行賬戶安全管理體系合作協(xié)議
- 2025年度常年法律顧問服務(wù)與金融科技領(lǐng)域法律咨詢合同
- 2025年中智集團(tuán)招聘筆試參考題庫含答案解析
- 肝癌圍手術(shù)期的護(hù)理
- 黑龍江省哈爾濱市南崗區(qū)2024-2025學(xué)年九年級上學(xué)期期末考試英語試題(含答案)
- 殘疾人就業(yè)培訓(xùn)
- Photoshop+2024學(xué)習(xí)手冊:第1課認(rèn)識與操作基礎(chǔ)
- 《不同血流限制訓(xùn)練方案對膝關(guān)節(jié)損傷運(yùn)動員下肢功能的影響》
- 藥品經(jīng)營企業(yè)(批發(fā)和零售)面臨的風(fēng)險點(diǎn)和應(yīng)對措施
- 基本公共衛(wèi)生服務(wù)項(xiàng)目培訓(xùn)
- 北師大版(2024新版)七年級上冊數(shù)學(xué)期末模擬測試卷(含答案)
- 無人機(jī)組裝與調(diào)試 課件 項(xiàng)目1任務(wù)1 多旋翼無人機(jī)飛行平臺組裝調(diào)試
- 消防行業(yè)崗位培訓(xùn)與校企聯(lián)合方案
評論
0/150
提交評論