廣東省廣州市番禺區(qū)禺山中學(xué)2023-2024學(xué)年高考沖刺(3)數(shù)學(xué)試題試卷_第1頁
廣東省廣州市番禺區(qū)禺山中學(xué)2023-2024學(xué)年高考沖刺(3)數(shù)學(xué)試題試卷_第2頁
廣東省廣州市番禺區(qū)禺山中學(xué)2023-2024學(xué)年高考沖刺(3)數(shù)學(xué)試題試卷_第3頁
廣東省廣州市番禺區(qū)禺山中學(xué)2023-2024學(xué)年高考沖刺(3)數(shù)學(xué)試題試卷_第4頁
廣東省廣州市番禺區(qū)禺山中學(xué)2023-2024學(xué)年高考沖刺(3)數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣東省廣州市番禺區(qū)禺山中學(xué)2022-2023學(xué)年高考沖刺(3)數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.正四棱錐的五個(gè)頂點(diǎn)在同一個(gè)球面上,它的底面邊長為,側(cè)棱長為,則它的外接球的表面積為()A. B. C. D.2.盒中有6個(gè)小球,其中4個(gè)白球,2個(gè)黑球,從中任取個(gè)球,在取出的球中,黑球放回,白球則涂黑后放回,此時(shí)盒中黑球的個(gè)數(shù),則()A., B.,C., D.,3.將函數(shù)圖象上所有點(diǎn)向左平移個(gè)單位長度后得到函數(shù)的圖象,如果在區(qū)間上單調(diào)遞減,那么實(shí)數(shù)的最大值為()A. B. C. D.4.已知曲線的一條對稱軸方程為,曲線向左平移個(gè)單位長度,得到曲線的一個(gè)對稱中心的坐標(biāo)為,則的最小值是()A. B. C. D.5.閱讀名著,品味人生,是中華民族的優(yōu)良傳統(tǒng).學(xué)生李華計(jì)劃在高一年級每周星期一至星期五的每天閱讀半個(gè)小時(shí)中國四大名著:《紅樓夢》、《三國演義》、《水滸傳》及《西游記》,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計(jì)劃共有()A.120種 B.240種 C.480種 D.600種6.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件7.已知復(fù)數(shù)z滿足(其中i為虛數(shù)單位),則復(fù)數(shù)z的虛部是()A. B.1 C. D.i8.在中,為上異于,的任一點(diǎn),為的中點(diǎn),若,則等于()A. B. C. D.9.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.10.下圖中的圖案是我國古代建筑中的一種裝飾圖案,形若銅錢,寓意富貴吉祥.在圓內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)取自陰影區(qū)域內(nèi)(陰影部分由四條四分之一圓弧圍成)的概率是()A. B. C. D.11.設(shè)平面與平面相交于直線,直線在平面內(nèi),直線在平面內(nèi),且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件12.已知函數(shù),,若對,且,使得,則實(shí)數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在正四棱柱中,P是側(cè)棱上一點(diǎn),且.設(shè)三棱錐的體積為,正四棱柱的體積為V,則的值為________.14.在中,,,,則________,的面積為________.15.已知拋物線的焦點(diǎn)和橢圓的右焦點(diǎn)重合,直線過拋物線的焦點(diǎn)與拋物線交于、兩點(diǎn)和橢圓交于、兩點(diǎn),為拋物線準(zhǔn)線上一動(dòng)點(diǎn),滿足,,當(dāng)面積最大時(shí),直線的方程為______.16.某外商計(jì)劃在個(gè)候選城市中投資個(gè)不同的項(xiàng)目,且在同一個(gè)城市投資的項(xiàng)目不超過個(gè),則該外商不同的投資方案有____種.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上且軸,直線交軸于點(diǎn),,橢圓的離心率為.(1)求橢圓的方程;(2)過的直線交橢圓于兩點(diǎn),且滿足,求的面積.18.(12分)已知函數(shù),其中,.(1)函數(shù)的圖象能否與x軸相切?若能,求出實(shí)數(shù)a;若不能,請說明理由.(2)若在處取得極大值,求實(shí)數(shù)a的取值范圍.19.(12分)某校為了解校園安全教育系列活動(dòng)的成效,對全校學(xué)生進(jìn)行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個(gè)等級,同時(shí)對相應(yīng)等級進(jìn)行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對應(yīng)的頻率分布直方圖如下:等級不合格合格得分頻數(shù)624(1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);(2)其他條件不變,在評定等級為“合格”的學(xué)生中依次抽取2人進(jìn)行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;(3)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中抽取10人進(jìn)行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.20.(12分)某中學(xué)準(zhǔn)備組建“文科”興趣特長社團(tuán),由課外活動(dòng)小組對高一學(xué)生文科、理科進(jìn)行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動(dòng)小組隨機(jī)抽取了200名學(xué)生的問卷成績(單位:分)進(jìn)行統(tǒng)計(jì),將數(shù)據(jù)按照,,,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學(xué)生,低于60分的稱為“理科方向”學(xué)生.理科方向文科方向總計(jì)男110女50總計(jì)(1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為是否為“文科方向”與性別有關(guān)?(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.參考公式:,其中.參考臨界值:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82821.(12分)某商場為改進(jìn)服務(wù)質(zhì)量,在進(jìn)場購物的顧客中隨機(jī)抽取了人進(jìn)行問卷調(diào)查.調(diào)查后,就顧客“購物體驗(yàn)”的滿意度統(tǒng)計(jì)如下:滿意不滿意男女是否有的把握認(rèn)為顧客購物體驗(yàn)的滿意度與性別有關(guān)?若在購物體驗(yàn)滿意的問卷顧客中按照性別分層抽取了人發(fā)放價(jià)值元的購物券.若在獲得了元購物券的人中隨機(jī)抽取人贈(zèng)其紀(jì)念品,求獲得紀(jì)念品的人中僅有人是女顧客的概率.附表及公式:.22.(10分)已知函數(shù),(1)證明:在區(qū)間單調(diào)遞減;(2)證明:對任意的有.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

如圖所示,在平面的投影為正方形的中心,故球心在上,計(jì)算長度,設(shè)球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設(shè)球半徑為,則,解得,故.故選:.【點(diǎn)睛】本題考查了四棱錐的外接球問題,意在考查學(xué)生的空間想象能力和計(jì)算能力.2.C【解析】

根據(jù)古典概型概率計(jì)算公式,計(jì)算出概率并求得數(shù)學(xué)期望,由此判斷出正確選項(xiàng).【詳解】表示取出的為一個(gè)白球,所以.表示取出一個(gè)黑球,,所以.表示取出兩個(gè)球,其中一黑一白,,表示取出兩個(gè)球?yàn)楹谇颍?,表示取出兩個(gè)球?yàn)榘浊颍?,所?所以,.故選:C【點(diǎn)睛】本小題主要考查離散型隨機(jī)變量分布列和數(shù)學(xué)期望的計(jì)算,屬于中檔題.3.B【解析】

根據(jù)條件先求出的解析式,結(jié)合三角函數(shù)的單調(diào)性進(jìn)行求解即可.【詳解】將函數(shù)圖象上所有點(diǎn)向左平移個(gè)單位長度后得到函數(shù)的圖象,則,設(shè),則當(dāng)時(shí),,,即,要使在區(qū)間上單調(diào)遞減,則得,得,即實(shí)數(shù)的最大值為,故選:B.【點(diǎn)睛】本小題主要考查三角函數(shù)圖象變換,考查根據(jù)三角函數(shù)的單調(diào)性求參數(shù),屬于中檔題.4.C【解析】

在對稱軸處取得最值有,結(jié)合,可得,易得曲線的解析式為,結(jié)合其對稱中心為可得即可得到的最小值.【詳解】∵直線是曲線的一條對稱軸.,又..∴平移后曲線為.曲線的一個(gè)對稱中心為..,注意到故的最小值為.故選:C.【點(diǎn)睛】本題考查余弦型函數(shù)性質(zhì)的應(yīng)用,涉及到函數(shù)的平移、函數(shù)的對稱性,考查學(xué)生數(shù)形結(jié)合、數(shù)學(xué)運(yùn)算的能力,是一道中檔題.5.B【解析】

首先將五天進(jìn)行分組,再對名著進(jìn)行分配,根據(jù)分步乘法計(jì)數(shù)原理求得結(jié)果.【詳解】將周一至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計(jì)數(shù)原理可得不同的閱讀計(jì)劃共有:種本題正確選項(xiàng):【點(diǎn)睛】本題考查排列組合中的分組分配問題,涉及到分步乘法計(jì)數(shù)原理的應(yīng)用,易錯(cuò)點(diǎn)是忽略分組中涉及到的平均分組問題.6.A【解析】

利用兩條直線互相平行的條件進(jìn)行判定【詳解】當(dāng)時(shí),直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【點(diǎn)睛】本題主要考查了兩直線平行的條件和性質(zhì),充分條件,必要條件的定義和判斷方法,屬于基礎(chǔ)題.7.A【解析】

由虛數(shù)單位i的運(yùn)算性質(zhì)可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點(diǎn)睛】本題考查了虛數(shù)單位i的運(yùn)算性質(zhì)、復(fù)數(shù)的概念,屬于基礎(chǔ)題.8.A【解析】

根據(jù)題意,用表示出與,求出的值即可.【詳解】解:根據(jù)題意,設(shè),則,又,,,故選:A.【點(diǎn)睛】本題主要考查了平面向量基本定理的應(yīng)用,關(guān)鍵是要找到一組合適的基底表示向量,是基礎(chǔ)題.9.D【解析】

先根據(jù)已知條件求解出的通項(xiàng)公式,然后根據(jù)的單調(diào)性以及得到滿足的不等關(guān)系,由此求解出的取值范圍.【詳解】由已知得,則.因?yàn)椋瑪?shù)列是單調(diào)遞增數(shù)列,所以,則,化簡得,所以.故選:D.【點(diǎn)睛】本題考查數(shù)列通項(xiàng)公式求解以及根據(jù)數(shù)列單調(diào)性求解參數(shù)范圍,難度一般.已知數(shù)列單調(diào)性,可根據(jù)之間的大小關(guān)系分析問題.10.C【解析】令圓的半徑為1,則,故選C.11.A【解析】

試題分析:α⊥β,b⊥m又直線a在平面α內(nèi),所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點(diǎn):充分條件、必要條件.12.D【解析】

先求出的值域,再利用導(dǎo)數(shù)討論函數(shù)在區(qū)間上的單調(diào)性,結(jié)合函數(shù)值域,由方程有兩個(gè)根求參數(shù)范圍即可.【詳解】因?yàn)?,故,?dāng)時(shí),,故在區(qū)間上單調(diào)遞減;當(dāng)時(shí),,故在區(qū)間上單調(diào)遞增;當(dāng)時(shí),令,解得,故在區(qū)間單調(diào)遞減,在區(qū)間上單調(diào)遞增.又,且當(dāng)趨近于零時(shí),趨近于正無窮;對函數(shù),當(dāng)時(shí),;根據(jù)題意,對,且,使得成立,只需,即可得,解得.故選:D.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究由方程根的個(gè)數(shù)求參數(shù)范圍的問題,涉及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)值域的問題,屬綜合困難題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設(shè)正四棱柱的底面邊長,高,再根據(jù)柱體、錐體的體積公式計(jì)算可得.【詳解】解:設(shè)正四棱柱的底面邊長,高,則,即故答案為:【點(diǎn)睛】本題考查柱體、錐體的體積計(jì)算,屬于基礎(chǔ)題.14.【解析】

利用余弦定理可求得的值,進(jìn)而可得出的值,最后利用三角形的面積公式可得出的面積.【詳解】由余弦定理得,則,因此,的面積為.故答案為:;.【點(diǎn)睛】本題考查利用余弦定理解三角形,同時(shí)也考查了三角形面積的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.15.【解析】

根據(jù)均值不等式得到,,根據(jù)等號成立條件得到直線的傾斜角為,計(jì)算得到直線方程.【詳解】由橢圓,可知,,,,,,,(當(dāng)且僅當(dāng),等號成立),,,,,直線的傾斜角為,直線的方程為.故答案為:.【點(diǎn)睛】本題考查了拋物線,橢圓,直線的綜合應(yīng)用,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.16.60【解析】試題分析:每個(gè)城市投資1個(gè)項(xiàng)目有種,有一個(gè)城市投資2個(gè)有種,投資方案共種.考點(diǎn):排列組合.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】

(1)根據(jù)離心率以及,即可列方程求得,則問題得解;(2)設(shè)直線方程為,聯(lián)立橢圓方程,結(jié)合韋達(dá)定理,根據(jù)題意中轉(zhuǎn)化出的,即可求得參數(shù),則三角形面積得解.【詳解】(1)設(shè),由題意可得.因?yàn)槭堑闹形痪€,且,所以,即,因?yàn)檫M(jìn)而得,所以橢圓方程為(2)由已知得兩邊平方整理可得.當(dāng)直線斜率為時(shí),顯然不成立.直線斜率不為時(shí),設(shè)直線的方程為,聯(lián)立消去,得,所以,由得將代入整理得,展開得,整理得,所以.即為所求.【點(diǎn)睛】本題考查由離心率求橢圓的方程,以及橢圓三角形面積的求解,屬綜合中檔題.18.(1)答案見解析(2)【解析】

(1)假設(shè)函數(shù)的圖象與x軸相切于,根據(jù)相切可得方程組,看方程是否有解即可;(2)求出的導(dǎo)數(shù),設(shè)(),根據(jù)函數(shù)的單調(diào)性及在處取得極大值求出a的范圍即可.【詳解】(1)函數(shù)的圖象不能與x軸相切,理由若下:.假設(shè)函數(shù)的圖象與x軸相切于則即顯然,,代入中得,無實(shí)數(shù)解.故函數(shù)的圖象不能與x軸相切.(2)(),,設(shè)(),恒大于零.在上單調(diào)遞增.又,,,∴存在唯一,使,且時(shí),時(shí),①當(dāng)時(shí),恒成立,在單調(diào)遞增,無極值,不合題意.②當(dāng)時(shí),可得當(dāng)時(shí),,當(dāng)時(shí),.所以在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,所以在處取得極小值,不合題意.③當(dāng)時(shí),可得當(dāng)時(shí),,當(dāng)時(shí),.所以在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,所以在處取得極大值,符合題意.此時(shí)由得即,綜上可知,實(shí)數(shù)a的取值范圍為.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.19.(1)64,65;(2);(3).【解析】

(1)根據(jù)頻率分布直方圖及其性質(zhì)可求出,平均數(shù),中位數(shù);(2)設(shè)“第1次抽取的測試得分低于80分”為事件,“第2次抽取的測試得分低于80分”為事件,由條件概率公式可求出;(3)從評定等級為“合格”和“不合格”的學(xué)生中隨機(jī)抽取10人進(jìn)行座談,其中“不合格”的學(xué)生數(shù)為,“合格”的學(xué)生數(shù)為6;由題意可得,5,10,15,1,利用“超幾何分布”的計(jì)算公式即可得出概率,進(jìn)而得出分布列與數(shù)學(xué)期望.【詳解】由題意知,樣本容量為,.(1)平均數(shù)為,設(shè)中位數(shù)為,因?yàn)?,所以,則,解得.(2)由題意可知,分?jǐn)?shù)在內(nèi)的學(xué)生有24人,分?jǐn)?shù)在內(nèi)的學(xué)生有12人.設(shè)“第1次抽取的測試得分低于80分”為事件,“第2次抽取的測試得分低于80分”為事件,則,所以.(3)在評定等級為“合格”和“不合格”的學(xué)生中用分層抽樣的方法抽取10人,則“不合格”的學(xué)生人數(shù)為,“合格”的學(xué)生人數(shù)為.由題意可得的所有可能取值為0,5,10,15,1.,.所以的分布列為0510151.【點(diǎn)睛】本題主要考查了頻率分布直方圖的性質(zhì)、分層抽樣、超幾何分布列及其數(shù)學(xué)期望,考查了計(jì)算能力,屬于中檔題.20.(1)列聯(lián)表見解析,有;(2)分布列見解析,,.【解析】

(1)由頻率分布直方圖可得分?jǐn)?shù)在、之間的學(xué)生人數(shù),可得列聯(lián)表.根據(jù)列聯(lián)表計(jì)算的值,結(jié)合參考臨界值表可得到結(jié)論;(2)從該校高一學(xué)生中隨機(jī)抽取1人,求出該人為“文科方向”的概率.由題意,求出分布列,根據(jù)公式求出期望和方差.【詳解】(1)由頻率分布直方圖可得分?jǐn)?shù)在之間的學(xué)生人數(shù)為,在之間的學(xué)生人數(shù)為,所以低于60分的學(xué)生人數(shù)為120.因此列聯(lián)表為理科方向文科方向總計(jì)男8030110女405090總計(jì)12080200又,所以有99%的把握認(rèn)為是否為“文科方向”與性別有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論