重慶資源與環(huán)境保護(hù)職業(yè)學(xué)院《智能計(jì)算》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
重慶資源與環(huán)境保護(hù)職業(yè)學(xué)院《智能計(jì)算》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
重慶資源與環(huán)境保護(hù)職業(yè)學(xué)院《智能計(jì)算》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
重慶資源與環(huán)境保護(hù)職業(yè)學(xué)院《智能計(jì)算》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
重慶資源與環(huán)境保護(hù)職業(yè)學(xué)院《智能計(jì)算》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)重慶資源與環(huán)境保護(hù)職業(yè)學(xué)院

《智能計(jì)算》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能在自動(dòng)駕駛領(lǐng)域有重要的應(yīng)用。假設(shè)一輛自動(dòng)駕駛汽車在行駛過(guò)程中需要做出決策,以下關(guān)于自動(dòng)駕駛中的人工智能決策的描述,正確的是:()A.自動(dòng)駕駛汽車的決策完全依賴于預(yù)先設(shè)定的規(guī)則和算法,不具備自主學(xué)習(xí)和適應(yīng)能力B.復(fù)雜的交通環(huán)境和意外情況不會(huì)對(duì)自動(dòng)駕駛汽車的決策造成困難,因?yàn)槠渚哂型昝赖母兄皖A(yù)測(cè)能力C.自動(dòng)駕駛汽車在決策時(shí)需要綜合考慮多種因素,如交通規(guī)則、行人行為和車輛狀態(tài)等D.人類駕駛員的干預(yù)對(duì)自動(dòng)駕駛汽車的決策沒(méi)有任何幫助,反而可能導(dǎo)致系統(tǒng)混亂2、在人工智能的發(fā)展中,倫理和社會(huì)問(wèn)題日益受到關(guān)注。假設(shè)一個(gè)人工智能系統(tǒng)被用于招聘決策,以下關(guān)于這種應(yīng)用可能帶來(lái)的問(wèn)題,正確的是:()A.人工智能系統(tǒng)能夠完全消除招聘中的人為偏見(jiàn),保證公平公正B.由于數(shù)據(jù)偏差和算法不透明,可能導(dǎo)致不公平的招聘結(jié)果和歧視C.企業(yè)無(wú)需對(duì)人工智能招聘系統(tǒng)的決策負(fù)責(zé),因?yàn)槭撬惴ㄗ詣?dòng)做出的決策D.人工智能招聘系統(tǒng)不會(huì)對(duì)求職者的個(gè)人隱私造成任何威脅3、在人工智能的圖像識(shí)別任務(wù)中,需要對(duì)大量的圖像進(jìn)行分類,例如區(qū)分貓、狗、鳥(niǎo)等不同的動(dòng)物類別。假設(shè)數(shù)據(jù)集包含各種不同角度、光照條件和背景下的圖像,為了提高圖像識(shí)別的準(zhǔn)確率和泛化能力,以下哪種技術(shù)或策略是重要的?()A.增加數(shù)據(jù)增強(qiáng)操作,如翻轉(zhuǎn)、旋轉(zhuǎn)、縮放圖像B.使用更復(fù)雜的神經(jīng)網(wǎng)絡(luò)架構(gòu),增加層數(shù)和參數(shù)C.只使用高質(zhì)量、清晰的圖像進(jìn)行訓(xùn)練D.減少訓(xùn)練數(shù)據(jù)的數(shù)量,以加快訓(xùn)練速度4、人工智能中的語(yǔ)音合成技術(shù)旨在將文本轉(zhuǎn)換為自然流暢的語(yǔ)音。假設(shè)我們要為一款智能語(yǔ)音助手開(kāi)發(fā)語(yǔ)音合成功能,以下關(guān)于語(yǔ)音合成的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過(guò)拼接預(yù)先錄制的語(yǔ)音片段來(lái)實(shí)現(xiàn)B.基于深度學(xué)習(xí)的方法能夠生成更自然的語(yǔ)音語(yǔ)調(diào)C.語(yǔ)音合成的質(zhì)量只取決于聲學(xué)模型D.韻律和情感的表達(dá)是語(yǔ)音合成中的重要挑戰(zhàn)5、人工智能在金融領(lǐng)域的風(fēng)險(xiǎn)評(píng)估和欺詐檢測(cè)中發(fā)揮著重要作用。假設(shè)要構(gòu)建一個(gè)系統(tǒng)來(lái)檢測(cè)信用卡交易中的欺詐行為,需要實(shí)時(shí)分析交易數(shù)據(jù)和用戶行為模式。以下哪種技術(shù)或方法在處理這種實(shí)時(shí)、動(dòng)態(tài)的數(shù)據(jù)時(shí)最為有效?()A.實(shí)時(shí)數(shù)據(jù)分析和監(jiān)控B.離線批量處理和分析C.基于經(jīng)驗(yàn)的規(guī)則判斷D.隨機(jī)抽樣檢查6、人工智能中的深度學(xué)習(xí)模型通常需要大量的計(jì)算資源進(jìn)行訓(xùn)練。假設(shè)一個(gè)研究團(tuán)隊(duì)資源有限。以下關(guān)于在有限資源下訓(xùn)練模型的策略描述,哪一項(xiàng)是不正確的?()A.可以使用數(shù)據(jù)增強(qiáng)技術(shù),通過(guò)對(duì)原始數(shù)據(jù)進(jìn)行隨機(jī)變換來(lái)增加數(shù)據(jù)量B.選擇輕量級(jí)的模型架構(gòu),減少參數(shù)數(shù)量和計(jì)算量C.降低模型的訓(xùn)練精度,如使用低精度數(shù)值表示,以加快訓(xùn)練速度D.為了保證模型性能,無(wú)論資源如何有限,都不能對(duì)模型進(jìn)行任何簡(jiǎn)化和壓縮7、在人工智能的可解釋性方面,一直是一個(gè)研究熱點(diǎn)。假設(shè)開(kāi)發(fā)了一個(gè)用于信用評(píng)估的人工智能模型,以下關(guān)于解釋模型決策的方法,哪一項(xiàng)是不太可行的?()A.使用特征重要性分析,確定哪些輸入特征對(duì)模型的決策影響最大B.對(duì)模型的內(nèi)部結(jié)構(gòu)和參數(shù)進(jìn)行詳細(xì)解釋,讓用戶理解模型的工作原理C.通過(guò)生成示例來(lái)說(shuō)明模型在不同情況下的決策邏輯D.拒絕提供任何解釋,認(rèn)為模型的準(zhǔn)確性比可解釋性更重要8、人工智能中的遷移學(xué)習(xí)可以將在一個(gè)任務(wù)上學(xué)習(xí)到的知識(shí)應(yīng)用到其他相關(guān)任務(wù)中。假設(shè)已經(jīng)有一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型,要將其應(yīng)用于醫(yī)學(xué)圖像分析,以下哪個(gè)因素可能會(huì)限制遷移學(xué)習(xí)的效果?()A.數(shù)據(jù)分布的差異B.模型的復(fù)雜度C.計(jì)算資源的限制D.任務(wù)的相似性9、人工智能在語(yǔ)音識(shí)別領(lǐng)域取得了重大進(jìn)展。假設(shè)要開(kāi)發(fā)一個(gè)能夠?qū)崟r(shí)將語(yǔ)音轉(zhuǎn)換為文字的系統(tǒng),以下關(guān)于語(yǔ)音識(shí)別的描述,哪一項(xiàng)是不正確的?()A.聲學(xué)模型用于分析語(yǔ)音的聲學(xué)特征,語(yǔ)言模型用于理解語(yǔ)言的語(yǔ)法和語(yǔ)義B.深度神經(jīng)網(wǎng)絡(luò)在語(yǔ)音識(shí)別中能夠提高識(shí)別準(zhǔn)確率和魯棒性C.語(yǔ)音識(shí)別系統(tǒng)在各種環(huán)境和口音條件下都能達(dá)到100%的準(zhǔn)確率D.對(duì)大量不同口音和背景噪音的語(yǔ)音數(shù)據(jù)進(jìn)行訓(xùn)練,可以提升系統(tǒng)的適應(yīng)性10、人工智能在圖像識(shí)別領(lǐng)域取得了顯著的成果。假設(shè)要開(kāi)發(fā)一個(gè)能夠識(shí)別水果種類的圖像識(shí)別系統(tǒng),需要考慮多種因素。以下關(guān)于圖像數(shù)據(jù)預(yù)處理的步驟,哪一項(xiàng)是最關(guān)鍵的?()A.對(duì)圖像進(jìn)行裁剪和旋轉(zhuǎn),以統(tǒng)一圖像的大小和方向B.將圖像轉(zhuǎn)換為灰度圖像,減少數(shù)據(jù)量C.對(duì)圖像進(jìn)行增強(qiáng)和去噪處理,提高圖像質(zhì)量D.隨機(jī)打亂圖像的順序,增加數(shù)據(jù)的多樣性11、在人工智能的知識(shí)圖譜構(gòu)建中,需要整合大量的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)。假設(shè)要為一個(gè)特定領(lǐng)域構(gòu)建知識(shí)圖譜,以下關(guān)于數(shù)據(jù)來(lái)源的選擇,哪一項(xiàng)是最關(guān)鍵的?()A.只選擇權(quán)威的學(xué)術(shù)文獻(xiàn)和研究報(bào)告,確保知識(shí)的準(zhǔn)確性B.廣泛收集互聯(lián)網(wǎng)上的各種信息,包括社交媒體和博客等C.結(jié)合行業(yè)專家的經(jīng)驗(yàn)和知識(shí),以及相關(guān)的數(shù)據(jù)庫(kù)和文檔D.隨機(jī)選擇一些數(shù)據(jù)來(lái)源,不進(jìn)行篩選和評(píng)估12、在人工智能的音樂(lè)創(chuàng)作領(lǐng)域,計(jì)算機(jī)可以生成音樂(lè)作品。假設(shè)我們要利用人工智能創(chuàng)作一首流行歌曲,以下關(guān)于人工智能音樂(lè)創(chuàng)作的描述,哪一項(xiàng)是不正確的?()A.可以模仿特定音樂(lè)風(fēng)格和作曲家的特點(diǎn)B.能夠完全替代人類音樂(lè)家的創(chuàng)作靈感C.需要大量的音樂(lè)數(shù)據(jù)進(jìn)行訓(xùn)練D.生成的音樂(lè)可能缺乏情感和藝術(shù)表達(dá)13、人工智能在智能家居領(lǐng)域的應(yīng)用不斷豐富。假設(shè)一個(gè)智能家居系統(tǒng)要利用人工智能實(shí)現(xiàn)自動(dòng)化控制,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.根據(jù)家庭成員的習(xí)慣和環(huán)境條件,自動(dòng)調(diào)整燈光、溫度和家電設(shè)備B.利用語(yǔ)音識(shí)別和自然語(yǔ)言處理技術(shù),實(shí)現(xiàn)與用戶的自然交互C.人工智能可以完全理解用戶的所有需求和意圖,不會(huì)出現(xiàn)誤解D.結(jié)合傳感器數(shù)據(jù)和機(jī)器學(xué)習(xí)算法,實(shí)現(xiàn)能源的高效管理和節(jié)約14、人工智能中的人工神經(jīng)網(wǎng)絡(luò)具有強(qiáng)大的學(xué)習(xí)能力。假設(shè)我們正在訓(xùn)練一個(gè)多層神經(jīng)網(wǎng)絡(luò)來(lái)預(yù)測(cè)股票價(jià)格的走勢(shì)。如果網(wǎng)絡(luò)的訓(xùn)練數(shù)據(jù)包含了過(guò)多的噪聲,會(huì)產(chǎn)生什么后果?()A.網(wǎng)絡(luò)的泛化能力增強(qiáng)B.網(wǎng)絡(luò)的訓(xùn)練速度加快C.網(wǎng)絡(luò)可能對(duì)新的數(shù)據(jù)預(yù)測(cè)不準(zhǔn)確D.網(wǎng)絡(luò)的結(jié)構(gòu)變得更加復(fù)雜15、生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種新興的人工智能技術(shù)。假設(shè)要使用GAN生成逼真的圖像。以下關(guān)于生成對(duì)抗網(wǎng)絡(luò)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.GAN由生成器和判別器組成,兩者通過(guò)對(duì)抗訓(xùn)練不斷優(yōu)化B.生成器負(fù)責(zé)生成假樣本,判別器負(fù)責(zé)判斷樣本的真假C.GAN可以生成具有高度創(chuàng)造性和多樣性的新數(shù)據(jù)D.GAN的訓(xùn)練過(guò)程非常穩(wěn)定,不會(huì)出現(xiàn)模式崩潰等問(wèn)題二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)談?wù)勅斯ぶ悄茉谥悄軇?chuàng)新潛力評(píng)估中的應(yīng)用。2、(本題5分)簡(jiǎn)述人工智能在社會(huì)發(fā)展未來(lái)展望和挑戰(zhàn)應(yīng)對(duì)中的策略。3、(本題5分)簡(jiǎn)述零樣本學(xué)習(xí)和少樣本學(xué)習(xí)的特點(diǎn)。三、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)使用TensorFlow實(shí)現(xiàn)一個(gè)目標(biāo)檢測(cè)模型,對(duì)復(fù)雜場(chǎng)景中的多個(gè)目標(biāo)進(jìn)行檢測(cè)和分類。調(diào)整模型參數(shù)以提高檢測(cè)的準(zhǔn)確率和召回率。2、(本題5分)使用Python中的OpenCV庫(kù),實(shí)現(xiàn)對(duì)視頻中的行人軌跡預(yù)測(cè),考慮行人的速度、方向和周圍環(huán)境等因素。3、(本題5分)利用Python的TensorFlow庫(kù),構(gòu)建一個(gè)自監(jiān)督學(xué)習(xí)模型,從大量無(wú)標(biāo)簽的自然語(yǔ)言文本數(shù)據(jù)中學(xué)習(xí)語(yǔ)言的語(yǔ)義表示。通過(guò)下游任務(wù),如文本分類,評(píng)估學(xué)習(xí)到的表示的質(zhì)量。4、(本題5分)在PyTorch中,構(gòu)建一個(gè)基于Transformer架構(gòu)的語(yǔ)言模型,對(duì)文本進(jìn)行生成。研究不同的訓(xùn)練策略和超參數(shù)對(duì)生成質(zhì)量的影響。5、(本題5分)運(yùn)用Python中的OpenCV庫(kù),實(shí)現(xiàn)對(duì)多攝像頭視頻的同步處理和分析

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論